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1. Introduction

This paper deals very briefly with the fundamental
research carried out in VUOSO in the field of self-
excited vibration occurring in machining. More detailed
information about this work can be found in the literature
[1-3). The work was aimed at determining the influence of
the characteristics of the machine tool on the occurrence
of sclf-excited vibration in order to be able to get higher
stability of machine tools at minimal weight. The theory
of self-excited vibration presented here explains all
basic characteristics of this phenomenon, and some of the
effects of changes in the machine tool on the vibration.
Among these are, for instance, cases in which changes
of rigidity of the machine in different directions cause
different degrees of stability, or cases in which a change
of the orientation of cutting in the machine (e.g., clamp-
ing of a lathe too] downwards instead of upwards and
reversing the direction of workpiece rotation) strongly
influences the vibration. A classic example of such a
change of orientation is the case of the boring bar with
rectangular cross-section, described in Section VI.

The entire work has been oriented toward the
analysis of the qualities of the machine and, consequent-
ly, the machine in our theory has been considered as a
vibratory system with any number n of degrees of free-
dom, in contrast to the work of most other authors who
have studied self-excited vibration in machining and
have paid attention mainly to the analysis of the cutting
process. In the mathematical treatment they have sim-
plificd the machine to a system of only one degree of
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freedom. On the basis of our theory a simple graphical
method for the calculation of the limit of stability has
been worked out, which is described in Section IV.

In contrast to the work of other anthors in the mathe-
matical explanation of self-excited vibration, only the
dependence of the cutting force on the relative position
of tool and work-piece has been used and it was found
unnecessary to take the cutting force as a function of the
velocity of the relative movement into account. As far as
the authors know, this type of self-excited vibration,
based purely cn a “positional feed-back” concept has
never been described before in the theory of mechanical
vibrations. The theory, however, does not lack of
generality and, as shown in (3], all the basic equations
remain valid for other more complicated and more general
relations between the cutting force and vibration,

ll. Basic Scheme. Cutting Process as a Measure
of the Stability of the Machine

The process of self-excited vibration in machining
can be diagrammatically described by a closed-loop
system'in Fig. 1. It shows in (1) the cutting process,
for which the input value is the relative vibration y of
the tool and the work-piece and the output value is the
variable component p of the cutting force. The block (2)
represents the machine, on which the cutting force p is
acting, causingvibration y. The number (3) expresses
the relative orientation of the cutting process and the
machine, i.e. mainly the position of the cutting process
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FIGURE 1

in relation to the vibratory system of the machine. First,
blocks (2) and (3) of the diagram will be treated. Next,
some more fundamental remarks will be made on the
process of self-excited vibration and the cutting process.

Self-excited vibration in machining has the basic
quality of all self-exciting processes: for certain values
of the parameters of the whole system (parameters of
parts (1), (2) and (3)) vibration does not develop at all
and one has stable machining; at other values of the
parameters vibration occurs and grows, resulting in un-
stable machining. In practice the system is always non-
linear, Therefore the amplitude of vibration grows only
to a finite value. However, we are not interested in this
final value of the amplitude. We are concerned only with
the question of stability.

The cutting process is characterized by a number of
parameters, such as cutting conditions, material of the
workpiece, material of the tool, cutting speed v, tool
angles « and y, thickness of chip a (proportional to the
feed), width of chip b (proportional to the depth of cut)
(see Fig. 2). By changing the cutting conditions itis
possible on a given machine to move. from stable to un-
stable machining. The conditions at which the vibration
begins to occur are called “limit conditions” of stable
machining,

In Fig. 2, for the sake of simplicity orthogonal cutting
is illustrated. It is obvious that the magnitude of the
coupling between the relative vibration of tool and work-
piece and the cutting force is proportional to the width
of chip b (the whole cutting process is performed identi-
cally in each unit of the length of the cutting edge).
Actually the influence of the width of cut b on the vibra-
tion, is the most important factor, At sufficiently small
width of cut b the machining isstable. By enlarging b,
all other conditions remaining constant, a certain value
of b can always be reached, at which the process converts
to an unstable machining condition. This is the limit
width of cut by, .

In studying the influence of the vibratory system of
the machine on self-excited vibration, it is the value bis
which will be used as a measure of the degree of stability
of the machine. The stability of various machines (or of
various modifications of a given machine) is compared by
comparing the values b, determined in individual cases,
all other cutting conditions being identical.

[ll. Principal Explanation of Self-Excited Vibrations
in Machining

The condition for the development of self-excited
vibrations in a linear vibratory system is that the force
acting on the system (in our case the alternating com-
ponent of the cutting force) has a component 90 degree
phase shifted to the vibration (this component is 180
degree phase shifted to the damping force). Only then
can the process deliver to the vibratory system the
energy necessary to balance the damping losses.

Generally it can be assumed that the relative vibra-
tion of tool and workpiece is performed in 3-dimensional
space and has components %, y, z in the directions X, ¥,
Z (see Fig. 2). It can be also assumed that the alternating
component p of the cutting force depends on all vibration
components x, y, z and also on its velocities %, y, £, If
we suppose the dependence of p on % or ¥ or 2, the neces-
sary phase shift between the force and the vibration
occurs already in the cutting process. This supposition
of the velocity relation has been used in early studies on
self-excited vibration in machining, for instance by Arnold
[5]. Later a number of other authors used this explanation,
e.g-, Sokolovskij [6], Stefaniak [7], Saljé [8], Sadowy
[9], Tobias [10], Shaw-Hélken [11], Shaw-Sanghani [12].
Various authors give various physical reasons for the
velocity relation. This principle is treated in Section
IITA. It is not incorporated in our theory.

Some authors, as Stefaniak, Tobias, Hahn use the
principle of reproduction, which does not suppose the
dependence of the cutting force on the velocity of
vibration. It is based on the special nature of machining,
in which the tool cuts in a surface which it has previous-
ly cut. This principle is incorporated also in our theory
and is explained in Section IIIC.

Another principle, which does not depend on the cutting
force but on the vibratory displacement, is the principle
of positional coupling, and is explained in Section IIIB.
This principle, published for the first time by the
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FIGURE 3

authors of this paper, was developed as the basis of our
theory.

A. “Velocity Relation” for the Cutting Force. This
principle can be best shown when a vibratory system with
one degree of freedom and a linear relation between the
altemating force p and the velocity % is assumed.

[n the equations of motion of the system

mi + cd92-cvab+lcx=0
(1)

m5é+(cd - cv):é+ kx =0

a difference between the damping and velocity coefficients
occurs. [f this difference(cd— cv) < 0, the solution of the
equation represents an unstable motion,

This principle does not explain a number of observed
characteristic facts, the existence of the cutting force
component depending on the vibration velocity has not
been sufficiently quantitatively ascertained and it is
obvions that the self-exciting energy which could origi-
nate in this way is very small in comparison with sour-
ces explained in Sections II[B and C. Therefore, we do
not apply this principle in our theory.

B. “Positional Coupling" Principle. In this principle
a vibratory system with at least two degrees of freedom

A, Amax.

FIGURE 4
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in two different directions must be assumed. A simple
case of such a system is shown in Fig. 3,

The relation between the cutting force and the vibra-
tion can have a very simple form. Let us suppose
(Fig. 2) that the change of the cutting force is
influenced only by the vibration component in the
direction (Y), which changes only the thickness of cut.
The cutting force consists of a constant average value
P, which depends on the average cut thickness @ and on
other cutting conditions, and of a vibratory component p,
which is proportional to the vibratory displacement y,
i.e., to the change of cut thickness a.

p=~ry (2)

The value of the coupling coefficient r depends on the
cutting conditions and is proportional to the cut width b.

Corresponding to Fig. 3, the tool is fixed to the mass
m of the vibratory system with natural modes in directions
I and /. Natural frequencies and stiffnesses of the
system in the directions [and [l are Q , & , and Q,, k,,
respectively. The system is damped although the dampers
are not drawn in the diagram.

Let us suppose that the system vibrates with frequency
o in both directions. The vibration in one direction will
be generally phase shifted in relation to the vibration in
the other direction. Then the mass and the cutting edge
will performan an elliptical movement as shown in Fig. 4.
Experimentally such a movement of the tool in self-excited
vibration in machining has been observed by Hahn [13].

Maximal displacement in the direction / (into the cut)
occurs at the moment when the tool point is at the point
A, , maximal displacement in the direction // occurs at
the point 4, whereas the maximal value of the cutting
force occurs at the moment when the tool point reaches
point @ . Itis evident that the alternating force com-
ponent may have a phase with respect to the vibrations /
and II. Mathematical treatment of this case (see [1])
shows that in order for self-excited vibration to occur two
conditions must be fullfilled: the width of cut must be
greater than the limit width b, , the direction of the mode
with lower natural frequency must fall between the

directions (¥) and P. (For the case of Fig. 3 this con-



dition is true if &, > &,. If it is not so, the system is
absolutely stable (for all values of b).

The value of the limit width of cut by, depends on th_e
stiffnesses and damping of the system and also on its di-
rectional orientation. This is illustrated in Fig. 5 in
which the calculated limit width b, is drawn as &
function of the angular position of the direction Il of the
mode with lower natural frequency. The curve by, '
separates the stable and unstable regions. Self-(.stIted
vibration develops at the lowest value of by, if
a=pB/2%

The origin of the self-exciting energy in the positional
coupling principle can be explained in the following way.
The direction of movement along the elliptical path is
supposed as shown by the arrow in Fig. 4. During the
first half of the tool movement, from point C to D, the
tool moves against the cutting force and energy is dis-
sipated from the vibratory system. During the second half
of movement, from D to C, the projection of the cutting
force has the same direction as the movement, and energy
is delivered to the vibratory system. Because in the
second half of the movement the tool moves at a greater
depth then in the first half the cutting force is greater,
and therefore the work performed is greater. There
occurs a surplus of energy which can supply the damping
losses.

C. Principle of Reproduvction. In all actual machining
cases the tool cuts in such a way that, once vibration has
occurred, the waviness of the surface generated during
the preceding revolution modulates the cross section of
the cut. InFig. 6 a simple case is illustrated, On the
surface to be cut there is @ waviness ¥ . The tool is
attached to the mass m of a simple vibratory system with
stiffness & and damping 4. The system vibrates and
creates a new wavy surface Y. The peaks of both suc-
cessions of waves are shifted by the value ¢.

Let us again suppose that the cutting force depends
only on the cross section of the cut, being larger at
greater momentary thickness of the cut and being in phase
with it. The momentary thickness value equals the
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FIGURE 7

average thickness e plus the difference between the
ordinate y, of the original waviness with the amplitude ¥,
and the ordinate y of the developing waviness with the

amplitude Y.

a=a +y -y . @)

The moment Ly o in which the momentary thickness o
and corespondingly also the alternating force component
is at maximum, is phase shifted in relation to the instant
at which y reaches its maximum, The phase shift ¢
adjusts itself «o that instubility occurs at the least
value b, possible.

IV. Calculation of the Limit of Stability

In our theory the simplest supposition is accepted, that
the instantaneous value of the cutting force depends only
on the instantaneous cross section of cut, Therefore
only the principles of positional coupling andof re-
production come into application. The dependence of
the cutting force on vibration is expressed by the follow-
ing conditions.

1) According to Fig. 7 the relative vibration of tool
and workpiece is performed simultaneously in several
directions, e.g., (Xi)' (Xk), with different phase relations
(the resulting relative movement being an ellipse), the
cutting force depends only on the projection of the dis-
placement in the direction (Y).

2) The amplitude P of the force is proportional to the
amplitude of the change of the cut thickness. The tool
cuts a surface, the waviness of which has the amplitude




Y,. The vibration has the amplitude Y. The force am-
phtude is then expressed by

-y ~Y). (4)

3) The coupling coefficient 7 is a real positive number.
Its value depends on the cutting conditions, mainly on
the cut width b. The coefficient r is approximately pro-
portional to b.

The vibratory system of the machine is actually a
system with an infinite number of degrees of freedom
with continuously distributed mass and elasticity.
Although the mass and elasticity may be nonuniformly
distributed, the system has a finite number n of distinct
degrees of freedom, The system of the machine, which
is three-dimensional, is diagrammatically shown in Fig.
8. To each of the degrees of freedom there corresponds

FIGURE 8

a natural frequency Q,a damping coefficient ,, and at the
point of the tool a natural relative stiffness %, and a
relative direction of natural vibration (X,). To each of
the modes of natural vibrations corresponds a mode
shape, given by the relative amplitudes of individual
points of the machine. An example of four important
modes of natural vibrations of & milling machine is
shown in Fig. 9.

The direction of natural vibrations(X,) of a mode is
very important in regard to the role which this mode will
play in the process of self-excited vibration. This will
be explained by a simplified example, in which the
direction (XL.) lies in the plane (Y, v), Fig. 10. Let us
denote o as the angle between the normal ¥ and the
direction (X,) and B the angle between Y and the cutting
force P,

An alternating force with the amphtude P and fre-
quency w, forces vibration in the direction (X,) only by
its projection P cos (a, - B), so that the v1brat1on am-
plitude X, is
2
i

(5)
w? +2/8w

X, =P cos (e —B)
where j=v/-1.

k, QF -
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In the process of self-excited vibration only the
projection ¥ of the vibration x,; in the direction (¥) is
applied. Its amplitude Y, will be

Y= P eos e~ ) cosa— —— i (6)
: ' Yk, 02-0® +2/8,0
The expression
u, = cos (a;~ B) cos a; (N

which we call the directional factor (and the generali-
zation of which for a three-dimensional case can easily
be imagined) influences strongly the value of the i-th
natural mode.

Two extreme cases should be mentioned, denoted in
Fig. 9 as (X,) | (P) and (X,) = () | (¥), for which both
w; = 0. The natural modes w1t11 these directions have no
vahdxty in the process of self-excitation, even though
they had the smallest stiffness. The mode with the
direction (X,) has no value because the cutting force
has no pro]ectmn in it and does not force any vibration
of it. The mode (X ) has no value because its vibration
does not deliver any component into the direction (¥)
and does not influence therefore the chip cross section.

The alternating force P () acts simultaneously on all
n modes of natural vibrations. The resulting amplitude of
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vibration in the direction (Y) is given by the sum of the
projections of the amplitudes of all individual modes.

- _— Q7

Y- Y.=P L ¢ . (8)
2P e
i=t i=y

Let us denote

n
i, 02
F o) = L : , (9)
e E k. QF - 0® +2j00
i=1
so that (8) can be briefly written as
Y=P.Flo) . (10)

To establish the condition for the limit of stability,
let us eliminate the variable P from (4) and (10). Then
we get after some modification the quotient ¢.

Y F
g=== LA (11)
% F(w) +—1—
R

The function F(w) is complex and accordingly the
quotient g is also complex. Its absolute value |q|
signifies the ratio of the absolute amplitudes of waves Y
and ¥ . If || <1, the depth of waves on a cut surface
will be smaller than in the preceding cut, The waviness
will subsequently diminish and the system is stable. On
the contrary, for {g| > 1 we get an unstable case. The
value |g| =1 corresponds to the limit of stability.

Let us express now the relation between the coefficient
r representing the cutting process and the qualities of the
vibratory system represented by the function F(w), at
the limit of stability, Let us resolve F (@) into its real
and imaginary parts:

Flw) = 6lw) + jH (o) .

At the limit of stability there will be

G+ jH
Iq| =1= . (12)
G+—-+jK
r
After some modification we get the condition for the
value of r on the limit of stability:
1
—5o = Cloyg,). 13
“lim

Practical use of (13) will be shown by the example of
the simple vibratory system in Fig. 3. The function
G (w), the real part of F(w), has for a one degree-of-
freedom system in the following form

G( ) 3 QZ - (1)2

w) =— ,
E Q% -w?)? + 46%0?

which is graphically shown in Fig. 11, The limit of

stability is given by the minimum paint of G (w). The

corresponding  value is the .

(14)

From the diagram the
value 1/2r, can be directly obtuined from which the
value r, can easily be determined. [or all other values
r<r. ., |g] <1and the system is stable. Forall values
r>r, always a value @ can be found, for which |g] >1
and there occurs instability.

A numerical calculation of T from (13) would be
practically impossible. Therefore the graphical method
shown in Fig. 11 has been proposed, which is easy even
for very complicated vibratory systems. According to
this method the curves G, (w) for all individual natural
modes are drawn and algebraically added together. The
minimum point of the summing curve determines the
values r. and oy .

V. Example of the Calculation of a Milling Machine

The practical application of the stability calculation
will be explained by the example of a milling machine,
In the first part of the work the limit cutting conditions
are determined by machining tests for various modi-
fications of the machine. For the calculation, the case
of milling with cylindrical cutter is chosen , in which the
overarm is not joined with the knee. This case has been
found as one of the most sensitive to self-excited vibra-
tions.

In the second stage the machine is artificially vibrated
by means of a vibrator which is placed in between tool
and workpiece. The artificial alternating force acts, in
one case vertically and in another horizontally with
variable frequency. Resonance characteristics of
relative vibration and mode shapes of natural vibrations
are measured. From the resonance characteristics the
values Qi’ ki’ 8, and the directions (X‘.) are calculated.
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The values obtained are assembled in Table].

TABLE |
Mode Frequency N.ufurcll Relative Direction
No. cps Stiffness Damping of
kp/pm Vibration
1 34 4 0,06 horizontal
2 64 2 0,035 horizontal
3 68 4 0,07 vertical
4 98 9 0,055 vertical

From these values the corresponding curves G, (w)
are constructed as shown in Fig. 9, (There the G/u
curves are given,)

The graphical solution of (13) is performed for various
cases of up and down milling, which differ in the direc-
tions of the normal (Y) to the cut surface and of the cut-
ting force P and consequently also in the values of the
directional factors u; for individual natura] modes of vi-
bration. In Fig. 12 the examples of the solution for one
case of up milling (see Fig. 12(a)) and for one case of
down milling (Fig. 12(b)) are given. In the left-hand side
of the figure the position of the tool and directions (Y)
and (P) are diagrammatically drawn for a depth of cut of
3 mm; in the middle the value of the directional factor u;
is graphically deduced. In the right hand side the
graphical calculations of the values r;; (which
correspond to the limit widths of the cut) are given.

The results, which are in agreement with the results
of machining tests, incorporate some interesting notions,
In the first case, where r; = 0,66 kp/um and ), =69
cps, the limit of stability is mostly influenced by the
mode with natural frequency 64 cps. The other modes
influence very slightly the summing curve G at its mini-
mum point. In the second case, because of the change of
directional orientation, the factor u, is smaller and
negative and the factor u_ is greater than in the first
case. The value of G, in the neighborhood of its mini-
mum is compensated by G, and the minimum point of the
summing curve (interrupted line) is shifted to the fre-

quency 104 cps. The corresponding value . =1,28
kp/pm is approximately two times higher as in the
preceding case.

In the machining tests the limit of stability was
attained in the first case at a width of milled surface of
25 mm and a frequency of vibration of 70 cps. In the
second case a limit width of 50 mm and vibration fre-
quency of 104 Hz were found. The agreement between
the experiment and the calculation is very good. Thus
the calculation is verified and it is possible to utilize
all conclusions which can be taken from the analysis of
Figs. 12(a) and 12(b). These indicate, for example, that
first of all the stiffness of the mode 64 cps should be
increased, By considering the mode shapes shown in Fig.
9, corresponding design changes of the machine can be
proposed.

Vi. Example of the Boring Bar

A characteristic example of the utilization of the
change of directional orientation for the improvement of
stability is the case of the boring bar. On a horizontal
boring machine the boring head with a single tool is at-
tached to the end of the boring bar, which has two op-
posite slots along the whole length. The cross-section
of the bar is shown in Fig. 13,

If the small influence of the other parts of the machine
(bed, column, table) on the qualities of the vibratory
system at the point of the tool is neglected, then the vi-
bratory system is reduced approximately to the mass of
the boring tools and the spring represented by the bar.
The slots in the bar cause the stiffness and frequency in
direction I to be lower than in direction /I. As the tool
is fixed with the bar and rotates with it, the relative po-
sitions of directions I, /] and the direction of the cutting
force P and of the normal to the cut surface (Y) remain
constant, If we change the clamping of the tool so that
its angular position (see Fig. 14) with respect to di-
rections [ and I varies, the limit width of the cut varies
also.
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FIGURE 12

For a certain length of the overhangof the bar natural The ratio of r;; | maximum to l;, Minimum is roughly
frequencies of 60 cpsin direction /, and 75 cps in di- 4:1.

rection /] have been measured. For an approximate
stability calculation the system was simplified to two
degrees of freedom with the two given frequencies.

The calculated values of r) are drawn in the polar
diagram Fig. 15 in relation to the angle o (Fig. 14), The
limit curve in Fig. 15 is symmetrical about the axis(Y),
During the change of the orientation in the range of 360
degrees, the limit curve has four maxima and four minima.

In the machining tests coincidence of the optimal and
worst positions of the tool with the positions calculated
was found. The ratio of r), max to ry min was found to
be approximately 6:1. The quantitative difference of
this ratio calculated and experimentally observed is

FIGURE 13 FIGURE 14
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FIGURE 15

explained by the simplification of the system in the cal-
culation. If theactual values of the system are taken a
better agreement of the test results and the calculation
can be obtained, as has been done, for instance, in the
experiments of Péters [14). In Fig. 16 reprinted from

[14] the limit width measured in the tests (full line) and
calculated (interrupted line) are given. The calculation
of Péters has been performed by a graphical method which
differs slightly from out methed, but is based on identical
assumptions. The results obtained are the same.

Vil. Conclusion

The authors have applied the theory and method of
calculation here described to the analysis of quite a
number of various types of machine tools. Experience
shows that under simplifying conditions on which the
described theory and calculation are based, the accuracy
of the description of the process of self-excited vibra-
tion from the point of view of the role of the machine in
this process is sufficiently high and there is no practical
reason to complicate the theory in the area of the cutting
process for the given purpose.

This is true for all basic kinds of machining such as
turning, boring, planing, milling, with the exception of
grinding (both external and intemal) . Grinding differs
from all other mentioned kinds of machining in two
aspects: in all actual grinding cases the value of the
coupling coefficient r is so high that always the process
is unstable; during the cutting process waviness develops
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not only on the surface of the work, but also on the sur-
face of the grinding wheel. Therefore, grinding requires
special study.

The main simplifying conditions of the described theory
are: the variable part of the cutting force depends only on
the y-component of the vibration, is proportional to it,
the coefficient of proportionelity  being a real number;
and the vibratory system of the machine is linearized,

Concerning the methods of measurement of dynamics
characteristics and of the calculation of the limit of
stability, modifications have been proposed by Kudinov
[15] and by Péters [14], which improve and simplify in
some cases the described type of operations (e.g., if the
number of various directional orientations of the cutting
process in the machine is small).

The authors of this paper are of the opinion that, under
the present state of knowledge about self-excited vibration
in machining from the point of view of the machine, it is
sufficient to consider the vibratory parameters of the
machine in relation to its design. We are able, on the
basis of measured parameters of natural vibrations of a
given machine, to indicate which of these parameters are
mainly responsible for the actual stability of the machine
and how the values of the individual parameters should
be changed in order to raise the stability. We are not able
to do that on the basis of drawings of the machine, as we
cannotcalculate the values of natural vibrations of the
machine with sufficient accuracy. Neither are we ableto
predict, with sufficient certainty, the changesin the
design of the measured machine so as to get the changes
of natural vibration which we propose as the result of our
calculation of the limit of stability. It would be useful,
however, if we could indicate the dimensions and the type
of design of the machine frame for a desired stability be-
fore we start with the design of it.

FIGURE 16



The authors do not think that the right approach to this
problem would be the elaboration of methods of calcu-
lation for Q,, k,, 8,, a;, which are necessary for the cal-
culation of stability, directly from the drawings. Such
calculation methods would be necessarily too tedious
and would very probably never be sufficiently accurate.
It seems more hopeful to look for a suitable combination
of experimental work using simplified models of the parts
of a future machine and performing machining tests with
these models. Then by generalizing the results of the
experiments, the future machine may be designed. The
use of electronic computers for these calculations could
be practical. Toward the elaboration of optimal practical
methods of this kind future research work should be

directed.
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