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1. IntrodlJction 

This paper deals very briefly with the fundamental 
research carried out in VUOSO in the field of self­
excited vibration occurring in machining. More detailed 
information about this work can be found in the literature 
[1-3]. The work wus aimed at determining the influence of 
the characteristics of the machine tool on the occurrence 
of self-excited vibration in arder ta be able ta get higher 
stability of machine tools at minimal weight. The theory 
of se lf-exci ted vibrution presented here explains aU 
basie characteristics of this phenomenon, and sorne of the 
effects of changes in the machine tool on the vibration. 
Among these are, for instance, cases in which changes 
of rigidity of the machine in different directions eauSe 
different degrees of stability, or cases in which a change 
of the orientation of cutting in the machine (e.g., clamp­
ing of a lathe tool downwards instead of upwards and 
reversing the direction of workpiece rotation) strongly 
influences the vibration. A classic example of such a 
change of orientation is the case of the boring bar with 
rectangular cross-section, described in Section VI. 

The entire work has been oriented toward the 
analysis of the qualities of the machine and, consequent­
ly, the machine in our theory has been considered as a 
vibratory system with any number n of degrees of free­
dom, in contrast to the work of most other authors who 
have studied self-excited vibration in machining and 
have paid attention mainly to the analysis of the cutting 
process. In the mathematical treatment they have sim­
plified the machine to a system of only one degree of 

freedom. On the basis of our theory a simple graphical 
method for the calculation of the limit of stability has 
been worked out, which is described in Section IV. 

In contrast ta the work of other authors in the mathe­
matical explanation of self-excited vibration, only the 
dependence of the cutting force on the relative position 
of tool and work-piece has been used and it was found 
unnecessary to take the cutting force as a function of the 
velocity of the relative movement into account. As far as 
the authors know, this type of self-exci ted vibra tian, 
based purely C:l a "positional feed-back" concept has 
never been described before in the the ory of mechanical 
vibrations. The theory, however, does notlack of 
generality and, as shown in [3], an the basic equations 
rcmain valid for other more complicated and more general 
relations between the cutting force and vibration. 

Il. Basic Scheme. ClJtting Process as a Measure 
01 the Stability 01 the Machine 

The process of self-excited vibration in machining 
can be diagrammatically described by a closed-loop 
system in Fig. 1. It shows in (1) the cutting process, 
for which the input value is the relative vibration y of 
the tool and the work-pie ce and the output value is the 
variable component p of the cutting force. The block (2) 
represents the machine, on which the cutting force p is 
acting, causingvibration y. The number (3) expresses 
the relative orientation of the cutting process and the 
machine, i.e. mainly the position of the cutting process 
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FIGURE 1 

in relation to the vibratory system of the machine. First, 
blacks (2) and (3) of the diagram will be treated. Next, 
sorne more fundamental remarks wiU be mad e on the 
process of self-excited vibration and the cutting process. 

Self-excited vibration in machining has the basic 
quality of a11 self-exciting processes: for certain values 
of the parameters of the whole system (parameters of 
parts (1), (2) and (3» vibration does not develop at aU 
and one has stable machining; at other values of the 
parameters vibration occurs and grows, resulting in un­
stable machining. In practice the system is always non­
linear. Therefore the amplitude of vibration grows only 
to a finite value. However, we are not interested in this 
final value of the amplitude. We are concerned only with 
the question of stability. 

The cutting process is characterized by a number of 
parameters, such as cutting conditions, material of the 
workpiece, material of the tool, cutting speed v, tool 
angles Il! and y, thickn~ss of chip a (proportional to the 
feed), width of chip b (proportionaI to the depth of cut) 
(see Fig. 2). By changing the cutting conditions it is 
possible on a given machine to move. from stable to un­
stable machining. The conditions at which the vibration 
begins to occur are caUed "limit conditions" of stable 
machining. 

In Fig. 2, for the sake of simplicity orthogonal cutting 
is iIlustrated. It is obvious that the magnitude of the 
coupling between the relative vibration of tool and work­
pieee and the cutting force is proportional to the width 
of chip b (the whole cutting process is performed identi­
caUy in each unit of the length of the cutting edge). 
ActuaIly the influence of the width of eut b on the vibra­
tion, is the most important factor. At sufficiently smaU 
width of eut b the machining isstable. By enlarging b, 
aIl other conditions remaining constan t, a certain value 
of b can always be reached, at which the process converts 
to an uns table machining condition. This is the limit 

width of cut %m' 
ln s tudying the influence of the vibratory sys tem of 

the machine on self-excited vibration, it is the value b . 
which will be used as a measure of the degree of stabiN~; 
of the machine. The stability of various machines (or of 
various, modifications of a given machine) is compared by 
comparm g the values blim determined in individua1cases, 
aIl other cutting conditions being identical. 

1/1. Principal Explanation of Self-Excited Vibrations
 
in Mach ining
 

The condition for the development of self-excited 
vibrations in a linear 'vibratory system is that the force 
acting on the system (in our case the alternating com­
ponent of the cutting force) has a component 90 degree 
phase shifted ta the vibration (this component is 180 
degree phase shifted to the damping force). Only then 
can the process deliver to the vibratory system the 
energy necessary to balance the damping losses. 

Generally it can be assumed that the relative vibra­
tion of tool and workpiece is performed in 3-dimensional 
space and has components x, y, z in the dire ctions X, Y, 
Z (see Fig. 2). It can be also assumed that the alternating 
component p of the cutting force depends on aIl vibration 
components x, y, z and also on its velocities i, j, i. If 
we suppose the dependence of p on i or j or i, the neces­
sary phase shift between the force and the vibration 
occurs aIready in the cutting process. This supposition 
of the velocity relation has been used in early studies on 
self-excited vibration in machining, for instance by Arnold 
[5]. Later a number of other authors used this explanation, 
e.g., Sokolovskij [6], Stefaniak [7J, Saljé [8], Sadowy 
[9], Tobias [l0], Shaw-Holken CU], Shaw-Sanghani [12]. 
Various authors give various physical reasons for the 
velocity relation. This principle is treated in Section 
IlIA. It is not incorporated in our theory. 

Sorne authors, as Stefaniak, Tobias, Hahn use the 
principle of reproduction, which does not suppose the 
dependence of the cutting force on the velocity of 
vibration. It is based on the special nature of machining, 
in which the tooI cuts in a surface which it has previous­
ly eut. This princip le is incorporated also in our theory 
and is explained in Section me. 

Another principle, which does not depend on the cutting 
force but on the vibratory displacement, is the principle 
of positional coupling, and is explained in Section mB. 
This principle, published for the first time by the 

{Y} 

____ feed ..lirection 

IY
workpleoe too~ 

FIGURE 2 

466
 



(yJ 

f. 

FIGURE 3 

authors of this paper, was developed as the hasis of our 

theory . 
A. "Velo city Relation" for the Cutting Force. This 

principle can be best shown when fi vibratory system with 
one degree of freedom and ,a linelj.r relation between the 
altemating force p and the ve locity x is assumed. 

In the equations of motion of the system 

mx + (cl - C ) X + kx = ° ( v 

a difference between the dumping and velocity coefficients 
occurs. If this diffcrcnce (cd - c) < 0, the solution of the 
equation rcpresen ts an unstab le motion. 

This principle does not explain a number of observed 
characteristic facts, the existence of the cutting force 
component depending on the vibration velocity has not 
becn sufficiently quantitatively ascertained and it is 
obvions that the self-exciting energy which could origi­
nate in this way is very small in comparison with sour­
ces explained in Sections IIIB and C. Thereforc, we do 
not apply this prin ciple in our theory. 

B. "Positional Coupling" Principle. In this principle 
a vibratory system with at least two degrees aI freedom 

o 

FIGURE 4 

i) 

FIGURE 5 

in two different directions must be assumed. A simple 
case of such a system is shown in Fig. 3. 

The relation between the cutting force and the vibra­
tion can have a very simple form. Let us suppose 
(Fig. 2) that the change of the cutting force is 
influenced only by the vibration component in the 
direction (Y), which changes only the thickness of eut. 
The cutting force consista of a constant average value 
I;. , which de pends on the average eut thickness a and on 
other cutting conditions, and of a vibra tory component p, 
whi ch is proportionai to the vibratory displacement y, 
i.e., to the change of eut thickness a. 

p = - ry (2) 

The value of the coupling coefficient r depends on the 
cutting conditions and is proportional to the eut width b. 

Corresponding to Fig. 3, the tooi is fixed ta the mass 
m of the vibratory sys tem with natural modes in directions 
1and Il. Natural frequencies and stiffnesses of the 
system in the dire ctions 1and Il are fi k and" k

l' l ' ~û2' 2' 
respectively. The system is damped althongh the dampers 
are not drawn in the diagram. 

Let us suppose that the system vibrates with frequency 
(ù in both directions. The vibration in one direction will 
be generally phase shifted in relation ta the vibration in 
the other direction. Then the mass and the cutting edge 
will performan an elliptical movement as shown in Fig. 4. 
Experimentally such a movernent of the tool in self-excited 
vibration in machining has been observed by Hahn [l3]. 

Maximal dis placement in the direction 1 (inta the eut) 
occurs at the momen t when the tool point is at the point 
AI' maximal displacement in the direction Il occurs at 
the point A ' whereas the maximal value of the cuttingz 
force accurs at the moment when the tool point i'eaches 
point a ' It is evident that the alternating force corn­max 
ponent may have a phase with respect ta the vibrations 1 
and II. Mathematical treatrnent of this case (see El}) 
shows that in order for self-exci ted vibration to occur two 
conditions must be fu'llfilled: the width of cut must he 
greaterthan the limit width blim' the direction of the mode 
with lower naturai frequency must fall between the 
directions (Y) and P. (For the case of Fig. 3 this con­
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dition is true if k > k • If it is not so, the sys tem is 
1 2 

absolutely stable (for aU values of b). 
The value of the limit width of eut blim depends on the 

stiffnesses and damping of the system and also on its di~ 
rectional orientation. This is illustrated in Fig. 5 in 
which the calculated limit width blim is drawn 8S a 
function of the angular position of the direction Il of the 
mode with lower natural frequency. The curve bUm 
separates the stable and uns table regions. Self~excited 
vibration develops at the lowest value of blim if 
Cl = [3/2. 

The origin of the self-exciting energy in the positional 
coupling principle can he explained in the following way. 
The direction of movement along the elliptical path is 
supposed as shawn by the arrow in Fig. 4. During the 
first half of the tool movement, from point C to D, the 
tool moves against the cutting force and energy is dis­
sipated from the vibratory system. During the second half 
of movement, from D ta C, the projection of the cutting 
force has the same direction as the movement, and energy 
îs delîvered ta the vibratory system. Because in the 
second half of the movement the tool moves at a greater 
depth then in the first half the cutting force is greater, 
and therefore the work performed is greater. There 
oécurs a surplus of energy which can supply the damping 
lasses. 

C. Princip/e of Reproduction. In ail actual machining 
cases the tool cuts in such a way that, once vibration has 
occurred, the waviness of the surface generated during 
the preceding revolutioli modula tes the cross section of 
the eut. In Fig. 6 a simple case is illustrated. On the 
surface to he cut there is a waviness Y . The tool is a 
attached to the mass m of a simple vibratory system with 
stiffness k and damping d. The system vibrates and 
creates a new wavy surface Y. The peaks of bath suc­
cessions of waves are shifted by the value cp. 

Let us again suppose that the cutting force depends 
only on the cross section of the cut, being larger at 
greater momentary thickness of the cut and being in phase 
with il. The momentary thickness value equals the 

(y) 

FIGURE 6 
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FIGURE 7 

average thickness an plus the tliEferencc hellVeen the 
ordinate Yo of the orip;inal wavilll~ss with Ille amplitude Yo 
and the ordinate y of lhe c1(lvdupiu~ wllvincss \Vilh the 
amplitude Y. 

Cl ~ Cl '- y 0 - y • (3)o 

The mome nt t ,i n wh ieh th e mllmcn turv thit:kness Clm . 
llnd correspondingly nbH) the llltcrtlllling furee cOlilponent 
is at maximum, is phase ::;h iftcd in l'\:Iatillll tn the instllnt 
al which y renches its mllximum. The phase shift cP 
adjusts itself fo'o thllt instllbility occurs ut the least 
value bl~m possible. 

IV. Calcu/otion of the Limit of Staôility 

In our thCOl'Y the simplcst supposition is accepted, that 
the instantnneous value nf the cutting force dcpends only 
on the instantaneous cross loWction of eut. Thcl'cfore 
only the principles of positionu! cOl1plin~ und of re­
production come intn application. The dependence of 
the cutting force on vibration is expressed by the follow­
ing conditions. 

1) According to Fig. 7 the re h\tivc vibration of tool 
and workpiece is performcd simultaneously in several 
directions, e.g., (X), (Xk)' \Vith different phnse relations 
(the resl1lting relntive movement bcing un ellipse), the 
cutting force depends only on the projection of the dis­
placement in the direction (y). 

2) The amplitude P of the force is proportionul ta the 
amplitude of the change of the cut thickness. The tool 
cuts a surface, the waviness of which has the amplitude 
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Y ' The vibration has the amplitude Y. The force am­
o 

plitude is then	 expressed by 

p = - r(Y - Y )' (4)o

3) The coupling coefficient ris a real positive number. 
Its value depends on the cutting conditions, mainly on 
the eut width b. The coefficient ris approximately pro­
portion al to b. 

The vibratory system of the machine is actually a 
system with an infinite number of degrees of freedom 
with continuous ly distributed mass and elasticity. 
Although the mass and elasticity may be nonuniformly 
distributed, the system has a finite number n of distinct 
degrees of freedom. The system of the machine, which 
is three-dimensional, is diagramma tically shown in Fig. 
8. To each of the degrees of freedom there corresponds 

FIGURE 8 

a natural frequency ni' a damping coefficient Qi' and at the 
point of the tool a natural relative stiffness k i and a 
relative direction of natural vibration (X). 1'0 each of 
the modes of natural vibrations corresponds a mode 
shape, given by the relative amplitudes of individual 
points of the machin'e. An example of four important 
modes of natural vibrations of a milling machine is 

shawn in Fig. 9. 
The dire ction of natural vibrations (Xi) of a mode is 

very important in regard to the l'ole which this mode will 
play in the process of self-excited vibration. This will 
be explained by a simplified example, in which the 
direction (X) lies in the plane (Y, v), Fig. 10. Let us 
denote a. i as the angle between the normal Y and the 
direction (X) and f3 the angle between Y and the cutting 
force P. 

An alternating force with the amplitu'de P and fre­
quency (1), forces vibration in the direction (Xi) only by 
its projection P cos (a. - (3) , 50 that the vibration am­

i 
plitude Xi is 

X. = P cos (a. 
l l 

l 
- (3)­k . 

t 
n~ 

l 
_(1) 2 + 2 jo ,(1) 

t 

(5) 

where j = Fl. 

~rc/s
 eo 60 
-{ 1 

.u 
~!eJr 

iD 1 

FIGURE 9 

In the process of self-exci ted vibration only the 
proj ection Yi of the vibration xi in the direction (Y) is 
applied. Its amplitude Yi will be 

The expression 

u. = cos (a.-	 f.l) cos a.. (7)
l l fJ l 

which we calI the directional factor (and the generali ­
zation of which for a three·dimensional case can easily 
be imagined) influences strongly the value of the i-th 
naturai mode. 

Two extreme cases should be mentioned, denoted in 
Fig. 9 as (Xl) 1 CP) and (X) := (v) 1 (Y), for which bath 
u. = O. The natural modes with these directions have no 

l 

validity in the process of self-excitation, even though 
they had the smallest stiffness. The mode with the 
direction (XI) has no value because the cutting force 
has no projection in it and does not force any vibration 
of it. The mode (Xz ) has no value because its vihration 
does not deliver any component into the direction (Y) 
and does not influence therefore the chip cross section. 

The alternating force P «(1)) flcts simuitaneously on aU 
n modes of natural vibrations. The resulting amplitude of 

469
 



FIGURE la 

vibration in the direction (Y) is given by the sum of the 
projections of the amplitudes of all individual modes. 

n n 

(8) 

30 that (8) can be briefly written as 

Y = P . F«(JJ) • (l0) 

Ta establish the condition for the limil of stability, 
let us eliminate the variable P from (4) and (l0). Then 
we get after sorne modification the quotient q. 

F«(JJ) 
(U)

1 
F«(JJ) +­

R 

The" function F«(JJ) is complex and accordingly the 
q~ot~e~t q is als,o complex. Its absolute value Iql 
3lgmfles the ratIO of the absolute amplitudes of waves Y 
and Y ' If Iq] <1, the depth of waves on a eut surface o 
will he smaller than in the preceding eut. The waviness 
will subsequently diminish and the system is stable. On 
the contrary, for Iql >1 we get an uns table ca.se. The 
value Iql = l corresponds ta the limi t of stability. 

Let us express now the relation between the coefficient 
r representing the cutting process and the qualities of the 
vibratory system represented by the function F (Ul), at 
the limit of stability. Let us resolve F(w) iuto its real 
and imaginary parts: 

At the limit of stability there will be 

(; + j Il 
Iql==l== (12) 

After sorne modification we get the condition for the
 
value of r on the lilllit of stubility:
 

(13) 

Practical use of (13) will be shawn hy the example of 
the simple vibratory system in Fig. 3. The function 
G«(JJ), the real part of F«(11), hus for a one degree-of­
freedom system in the follow ing fonn 

u Ul _ Ml 

G«(ù) ::: - -::------ (14)
k m2 _(,/)2 1- 482(// ' 

which is graphically shown in Fig. 11. Thc Iimit of 
stability is givcn by the minimum point of G(w). The 
corresponding (/) value is the (,)tÏ11' From the dia gram the 
value 1/2rlim can be directly obtaincd from which the 
value f lim cali ensily he determincll. For all other values 
f < r Iql < 1 and the system is stuble. Fur al! values1im , 

r> f always a value Clln be found, for which Iql >1(1)lim
 
and lhere occurs instnbility.
 

A numerical culculathlll of fi' frolll (13) would he 
Ull 

practically imposs illic. There fore th e gmphical method 
shawn in Fig. 11 hus becn pruposed, which is cusy even 
for very complicated vibrator)' ~p.;t(~IllS. According ta 
this method the curves (;,({t)) fol'ull individllul natllrul 

L 

modes are druwn und nlgl'bmicnlly lldded together. The 
minimum point of the sUllllllinf'; curve determines the 
va lues fi' and Cll]' •

lffi lm 

V. Example of the Calcu/ation of a Mi/ling Machine 

The practical application of the stnbility calculation 
will be explained by the eXHmple of u milling machine. 
In the first part of the work the lilllit eutting conditions 
are determined by mnchining tests for various modi· 
fications of the machine. For the caleulation, the case 
of milling with cylindrical cutter is chosen, in which the 
overarm is not joined with the knel'. This case hus been 
found as one of the most sensitive to self-excited vibra­
tions. 

ln the second stage the mochine is artificially vibrated 
by means of a vibrator which is placed in between tool 
and workpiece. The artificial alternating force acts, in 
one case vertically und in llnother horizontally with 
variable frequency. Resonance charucteristics of 
relative vibration and mode shapes of naturai vibrations 
are measured. From the resonnnce characteristics the 
values ni' ki' Bi and the directions (X) are calculated. 
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FIGURE 11 

The values obtained are assembled in Table I. 

TABLE 1 

Mode 
No. 

Frequeney 
eps 

Natural 
Sti ffness 

kp/flm 

Relative 

Domping 

Direction 
of 

Vi bration 

1 
2 
3 
4 

34 
64 
68 
98 

4 
2 
4 
9 

0,06 
0,035 
0,07 
0,055 

horizontal 
horizontal 
vertical 
vertical 

From these values the corresponding curves Gi (w) 
are constructed as shawn in Fig. 9. (There the Glu 
curves are given.) 

The graphical solution of (13) is performed for various 
cases of up and down milling, which differ in the direc­
tions of the normal (Y) ta the eut surface and of the cut­
ting force P and consequently aIsa in the values of the 
directional factors u. for individual natural modes of vi­

t 

bration. In Fig. 12 the examples of the solution for one 
case of up milling (see Fig. 12 (a)) and for one case of 
down milling (Fig. 12(b)) are given. In the left-hand side 
of the figure the position of the tool and directions (Y) 
and (P) are diagrammatically drawn for a depth of eut of 
3 mm; in the middle the value of the directional factor ui 
is graphicaUy deduced. In the right hand side the 
graphical calculations of the values rHm (which 
correspond ta the limit widths of the eut) are given. 

The results, which are in agreement with the results 
of mac hining tests, incorporate sorne interesting notions. 
In the first case, where rHm = 0,66 kp/Jlffiand wlim =69 
cps, the limit of stability is mostly influenced by the 
mode with natural frequency 64 cps. The other modes 
influence very slightly the summing curve Gat its mini­
mum point. in the second case, because of the change of 

directional orientation, the factor u is smaller and 
2 

negative and the factor ua is greater than in the first 
case. The value uf G in the neighborhood of its mini­z 
mum is compensated by Ga and the minimum point of the 
summing curve (interrupted line) is shifted ta th e fre­

quency 104 cps. The corresponding value rlim =1,28 
kplpm is approximate ly two times higher as in the 
preceding case. 

In the machining tests the limit of stability was 
attained in the first case at a width of mi lied surface of 
25 mm and a frequency of vibration of 70 cps. In the 
second case a limit width of 50 mm and vibration fre­
quency of 104 Hz were found. The agreement between 
the experiment and the calculation is very good. Thus 
the calculation is verified and it is possible ta utilize 
aU conclusions which can be taken from the analysis of 
Figs. 12(a) and 12(b). Theseindicate, for example, that 
firs t of a11 the stiffness of the mode 64 cps should be 
increlised. By considering the mode shapes shawn in Fig. 
9, corresponding design changes of the machine can be 
proposed. 

VI. Example of the Boring Bar 

A characteristic example of the utilization of the 
change of directional orientation for the improvement of 
stability is the case of the boring bar. On a horizontal 
boring machine the borin g head with a single tool is at­
tached to the end of the boring bar, which has two op­
posite slots along the whole length. The cross-section 
of the bar is shawn in Fig. 13. 

If the small influence of the other parts of the machine 
(bed, column, table) on the qualities of the vibratory 
system at the point of the tool is neglected, then the vi· 
bratory system is reduced approximately ta the mass of 
the boring taols and the spring represented by the bar. 
The slots in the bar cause the stiffness and frequency in 
direction 1 ta be lower than in direction Il. As the tool 
is fixed with the bar and rotates with it, the relative po­
sitions of directions T, II and the direction of the cutting 
force P and of the normal to the eut surface (Y) remain 
cons tant. If we change the clamping of the tool sa that 
its angular position (see Fig. 14) with respect ta di­
re ction'S 1and II varies, the limit width of the cut varies 
also. 
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For a certain length of the overhangof the bar natural 
frequencies of 60 cps in direction 1, and 75 cps in di­
rection II have been measured. For an approximate 
stabili ty calculation the system was simplified to two 
degrees of freedom with the two given frequencîes. 

The calculated values of 'Hm are drawn in the polar 
diagram Fig. 15 in relation to the angle ex (Fig. 14). The 
limit curve in Fig. 15 is symmetrical about the axis (Y). 
During the change of the orientation in the range of 360 
degrees, the limit curve has four maxima and four minima. 

Il. 

L----1'7' À-.4"'/-'/' A----/. 

1/. 

FIGURE 13 

The ratio of rI' maximum ta rI' minimum is roughly lm lm 
4: 1. 

In the machining tests coincidence of the optimal and 
worst positions of the tool with the positions calculated 
was found. The ratio of rI' max ta r min was found ta lm lim 
be approximately 6: 1. The quantitative difference of 
this ratio calculated and experimentally observed is 

Il. 

l----I~ 

FIGURE 14 
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not only on the surface of the work, but also on the sur­CY) face of the grinding wheel. Therefore, grinding requires 
special study. 

The main simplifying conditions of the described theory 
are: the variable part of the cutting force depends only on 
the y-component of the vibration, is proportional to it, 
the coefficient of proportionality r being a real number; 
and the vibratory system of the machine is linearized. 

M 
Concerning the methods of measurement of dynamics 

YJ15 characteristics and of the calculation of the limit of 
stability, modifications have been proposed by Kudinov 

~90 +--+-~+--~ [15] and by Péters [14], which improve and sirnplify in 
sorne cases the described type of operations (e.g., if the

105 number of various directional orientations of the cutting 
process in the machine is smaH). 

The authors of this paper are of the opinion that, under 
the present state of knowledge about self-excited vibration 
in machining from the point of view of the machine, it is 
sufficient to consider the vibratory parameters of the 
machine in relation to i ts design. We are able, on the 
basis of measured parameters of natural vibrations of a 
given machine, to indicate which of these parameters are 
mainly responsible for the actual stability of the machine 
and how the values of the individual parameters sbould 

FIGURE 15 
be changed in order to raise the stability. We are not able 
to do that on the basis of drawings of the machine, as we 

explained by the simplification of the system in the cal­ cannot calculate the values of natural vibrations of the 
culation. If the actual values of the system are taken a machine with sufficient accuracy. Neither are we able to 
better agreement of the test resu1ts and the calculation predict, with sufficient certainty, the changes in the 
can be obtained, as has been done, for instance, in the design of the measured machine so as to get the changes 
experiments of Péters [14]. In Fig. 16 reprinted from of natural vibration which we propose as the res uIt of our 
[14] the limit width measured in the tests (fuHline) and calculation of the limit of stability. It would he useful, 
calculated (interrupted line) are given. The caleulation however, if we could indicate the dimensions and the type 
of Péters has been performed by a graphical method which of design of the machine frame for a desired stability be­
differs slightly from out method, but is based on identical fore we start with the design of it. 
assumptions. The results obtained are the same. 

90'VII. Conclus ion 

The authors have applied the theory and method of 
calculation here described to the analysis of quite a 
number ~f various types of machine tools. Experience 
shows that under simplifying conditions on which the 
described theory and caleulation are based, the accuracy 
of the description of the proeess of self-excited vibra­
tion from the point of view of the role of the machine in 
this process is sufficiently high and there is no practi..:al 
reason to c omplicate the theory in the area of the cu tting 
proeess for the given purpose. 

This is true for aU basic kinds of machining such as 
turning, boring, planing, milling, with the exception of 
grinding (both external and internaI). Grinding differs 
from aH other mentioned kindsof machining in two 
aspects: in aH actual grinding cases the value of the 
coupling coefficient ris so high that always the process 210' 
is uns table; during the cutting process waviness develops 

FIGURE 16 
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The authors do not think that the right approach to this 
problem would be the elabaration of methods of cal cu­
lation for n., k., ô., (X., which are necessary for the cal­

~ 1 1 1 

culation of stability, directly from the drawings. Such 
calculatlon methods would be necessarily tao tedious 
and would very probably never be sufficiently accurate. 
It seems more hopeful ta look for a suitable cambination 
of experimental work using simplified models of the parts 
af a future mac hine and performing machining tests with 
these models. Then by generalizing the results of the 
experhnents, the future machine may be designed. The 
use of electronic computers far these calculations cauld 
he practical. Taward the eiaboratian af optimal practical 
methads of this kind future research work should he 
directed. 
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