H. E. MERRITT

Section Head,

Hydraulic Systems Section,

Product Development Department,

The Cincinnati Milling Machine Company,
Cincinnati, Ohic

Theory of Self-Excited Machine-Tool Chatter

Contribution to Machine-Tool Chatter
Research—1

Self-excited chaiter, an instability of the cutting process in combination with the ma-
chine structure, is a basic performance limitation of a machine tool. A theory is de-
veloped which permits calculation of borderlines of stability for a siructure having
n-degrees of freedom and assuming no dynamics in the culting process. Harmonic
solutions of the system characteristic equation are found using a special chart, and the
resulting data are used to plot a stability chart. However, an infinite number of such
stability charts exists for o given machine because the structure dynamics vary with,
cutting-force orientation. This fact makes a simpler index of chatter performance de-
sirable. A simple stability criterion is proposed which siates that the directional cut-
ting stiffness must be less than one half the minimum directional dynamic stiffness of
the structure for each force orientation to assure chatter-free performance at all spindle
speeds. Thus chatter-free performance can be fundamentally identified with adequate
structural dynamic stiffness for all cutting-force orieniations. Such a broad require-
ment for dynamic stiffness is difficult to meet in the design stage since structural charac-
teristics are not easily predicted and controlled. Machine testing with continual tm-
provements in the structure to increase dynamic stiffness 1is currently the best way to

combat chatter.

Introduction

VHATTER is a nuisance to metal cutting and can be
demonstrated on any chip-producing machine tool. The effects
of chatter are all adverse and affect surface finish, dimensional
aceuracy, tool life, and machine life.

Undulations in the surface finish are commonly referred to as
chatter or chatter marks. A great many factors contribute
to chatter marks. In the case of milling, the basic mechanics of the
cutting process itself results in undulations (cutter marks) in the
finish. Velocity variations in slide motion, perhaps caused by
unbalance in the drive system, servo instability, or stick-slip
friction, can result in periodic variations in the finish. However,
forced and self-excited vibrations are the major sources of the
finish problem referred to as chatter.

Forced vibrations can result from unbalance of rotating mem-
bers and /or impacts by a multitooth cutter. The theory of forced
vibrations is rather well developed compared to the self-excited
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type. In practice, chatter resulting from forced vibrations is
traced by comparing the frequency of chatter to the frequency of
possible forcing functions. Once the driving force causing the
chatter is identified, the driving force and/or the dynamic com-
pliance (inverse of dynamic stiffness) spectrum of the machine
structure are reduced to permissible values.

The violent chatter often observed during cutting is caused by
gelf-excited vibrations. The theory of seli-excited chatter has
taken on increased importance because of advancements in ma-
chining speed and the machining of thermal-resistant alloys. In
recent years many theories [1, 2, 3] have been proposed to ex-
plain self-excited chatter, but no single theory covers all the ef-
fects observed.

A typical stability chart for a machine tool is shown in Fig. 1.
An examination of this chart will aid in defining clearly the prob-
lem of computing self-excited chatter and indicate the achieve-
ment of published theories toward the solution of this problem.
Referring to Fig. 1, three borderlines of stability can be identified
which for classification purposes will be called lobed, tangent,
and asymplotic. The lobed borderline of stability is the
exact borderline and may be approximated with the asymptotic
borderline or more closely with the tangent borderline. The
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Nomenclature
C = machining constant (usually on the order of k.. = directional static stiffness of structure (slope of
75 deg), deg curve of F versus ), Ib/in.
ey, €1 C3, .. = damping coefficients of modes of vibration of ki, ks, ks,. .. = spring constants of modes of vibration of strue-
structure, lb sec/in. ture, 1b/in.
F = resultant cutting force or vector force exciting m = equivalent mass of structure, 1b sec?/in.
the structure, 1b N = spindle speed, rps
f = frequency, cps number of degrees of freedom of structure, di-
fo = chatter frequency along lobed borderline of mensionless
stability, cps n, an integer = (integer number of cycles cut on workpiece (dur-
Ju 92, 9, ... = directional factors, dimensionless ing chatter) between tool tip and tool face,
. = normalized dynamic compliance of structure, cycles
dimensionless S, = mean shear strength of metal being cut, psi
k. = static directional cutting stiffness (slope of s = Laplace operator, sec™!
curve of £ versus ), 1o/in. T = delay time between tool tip and tool face (T =
k; = minimum directional dynamic stiffness in dy- 1/N for lathe, T = 1/2N for drill, and T =

namic stiffness spectrum of structure, 1b/in.

Journal of Engineering for Industry

(Coniinued on next page)

NOVEMBER 1965 / 4]



LOBED BORDERLINE OF STABILITY
/ TANGENT BORDERLINE OF STABILITY

ASYMPTOTIC BORDERLINE GF STABILITY

UNSTABLE REGION
WIDTH

OF CUT

STABLE REGICON

SPINDLE SPEED

Fig. 1 Typical stability chart for a machine tool

asymptotic, tangent, and lobed borderlines of stability are pro-
gressively more difficult to compute but, fortunately, are
progressively less important from a practical viewpoint. Each of
these borderlines may be attributed to a particular physical
phenomenon.

The asymptotic borderline of stability is the principal border-
line since it defines the maximum width of cut which will result
in stable cutting at all speeds. If spindle speed is chosen care-
fully, especially at lower speeds, then the tangent and lobed
borderlines may indicate a larger stable width of cut. However,
this method of speed selection is not practical since a different
stability chart exists for each orientation of the resultant cutting
force and for each possible position of the movable elements of a
machine tool.

Several theories have been published which gave calculation
procedures for some stability borderlines. Tlusty [4] has solved
the important problem of computing the asymptotic borderline
for a structure with n-degrees of freedom assuming negligible
cutting dynamics. Tobias and Fishwick [5, 6, 7] have made an
exact solution to the three borderlines of stability for a structure
with one degree of freedom and have developed the concept of
penetration rate to account for the region of stability at lower
speeds; i.e., the area bounded by the asymptotic and tangent
borderlines. However, the concept of penetration rate has not
met with general acceptance since other explanations exist for
this region [13]. If this region is not accounted for, then the
tangent borderline becomes coincident with the asymptotic
borderline.

Gurney and Tobias [8] and Peters [9] have published similar
approaches to the problem of computing the asymptotic and
lobed borderlines of stability for a structure with n-degrees of
freedom and assuming negligible cutting-process dynamics. How-
ever, these techniques are computationally inconvenient to apply.

The purpose of this paper is to show that self-excited chatter
can be represented by a feedback loop. Analysis of this loop
using feedback control theory yields a straightforward method of

calculating the asymptotic and lobed borderlines of Stabilliw «
machine-tool system with a structure having n-degrecs B
and assuming negligible cutting-process dynamics,

T frpn
Lilteden,

Derivation of Ghatler Loop

In order to derive the feedback loop representing
cutting precess will be illustrated with a single-pe;
forming orthogonal cutting on a lathe as shown in
tool is mounted rigidly and the feed rate is adjusted 5o o
average or steady-state depth of cut, ue(?). Iz this ste
condition, the structure maintains a certain deflect,
the steady-state cutting force.

this point of equilibrium.

ion
Equations will be w

2aGsLd e

fiven alyogs

Uncut Chip-Thickness Equation

Referring to Fig. 2, the instantaneous depth of cut, u(é), is -
creased ag the workpiece moves away from the cutting toni '
as y(t) increases. Further, if the workpiece moves a,wgty from the
tool, & lump is left on the workpiece. This lump increnses 4
uncut chip thickness one revolution of the work or 7 s
later. Hence the instantaneous uncut chip thickness can bLe
written

; Le

i

u(t) = w(t) — (&) + py(t — T) (1
where

and u is the overlap factor. The overlap factor accounts for the
overlapping of successive cuts; i.e., it defines the portiou of the
previous cut which overlaps the present cut. In a turning opera-
tion such as threading, the previously machined surface does not

WORKPIECE AND
MACHINE TOOL STRUCTURE

(RIGIDLY
MOUNTED)}!

Fig. 2 Cutter in a turning operation

Nomenclature
1/zN for milling machine), sec 8y, 8, 8;,... = damping ratios of modes of vibration of struc-
t = time, sec ture, dimensionless . .
u = instantaneous uncut chip thickness, in. 04, 0y, 8,,. .. = damping ratios of numerator quad“":“w S““f::i
up = average or steady-state uncut chip thickness, of dynamic compliance of structure, ¢l
in. sionless ) '
w; = width of. cut (measured along cutting edge of ':L _:_ ;K:Z?faiig:f;‘ %i?jé;if;lifrtion ofa l;y’(:lc.{:lli
toc?l), . on workpiece (during chatter) betweet ool
y = rela.'tlve displacement be.tween tool apd work- tip and tool face, cycles
piece normal to machined surface, in. 7 = friction angle, deg
z = total number of cutting edges on cutter w = 21/ = angular frequency, rad/sec .
a = top rake angle of tool, deg w1, @, Ws,. .. = undamped natural frequencies of modes of Vi
oy, O, a,... = angle of modes of vibration of structure relative bration of structure, rad/sec )
to a line normal to machined surface, deg w,, o, ©,... = undamped natural frequencies of D’»"me‘::’:t;)l;
B = angle between resultant cutting force and a line quadratic factors of dynamic compliance

normal to machined surface, deg

448 / NoveEmBER 1965

structure, rad/sec

Transactions of the ASME



affect the present uncut chip thickness and, therefore, u = 0.
Eowever, for most machining operations, such as orthogonal
cubting, u = 1.

The overlap factor also may be used to account for the geo-
metrical effects of rounding at the tool cutting edge and of tool
clearance angle. Both of these effects tend to smear the ma-
chined surface and thereby reduce the amplitude of periodic
variations in the machined surface. It is difficult to make a pre-
cise definition for u; however, it is certainly bounded between
zero and unity; i.e., 0 < u < 1. Anoverlap factor of unity is the
most critical value from the viewpoint of chatter.

Laplace transforming equation (1) yields

u(s) = uo(s) — y(8) + ue~T(s) (2)

Lutting-Procass Equation
The resultant cutting force, F(¢), is related to the instantaneous
uncut chip thickness, w(t), by the dynamics of the cutting process.
The differential equations describing the dynamic behavior of
the cutting process have not been written from the physics of
metal cutting. Although much work has been done on cutting
process dynamics [10-13], a definitive experimental result has
nob been published. However, the steady-state behavior of the
cutting process has been analyzed by Merchant [14]. If the
dynamics are neglected, then Merchant’s equations can be com-
bined to give
F(t) = kau(t) 3)

where k, is the static directional cutting stiffness, or simply cut-
ting stiffness, and is given by

2'!1118,"
sin C — sin (7 — «)

4)

e =

The qguantities S,, C, and 7 in equation (4) are determined by

the workpiece material, and « is obtained from the tool geometry.

Therefore, the cutting stiffness is directly proportional to the

width of cut for a given workpiece material and tool geometry.
Laplace transforming equation (3) gives

F(s) = kauls) (5)

The direct proportionality between resultant cutting force and
uncut chip thickness is the simplest approximation that can be
made to the cutting process.

Structure Equation

The vector cutting force acts to displace the workpiece and the
structure of the machine. Therefore the dynamic compliance

Ci

MASS,m

characteristic of the structure is of interest from the viewpoint of
chatter. Machine-tool structures are continuous systems and,
therefore, are described by partial differential equations. These
are formidable equations with complex boundary conditions and
constraints. In most cases the dynamic compliance may be
approximated adequately using a lumped-parameter analysis.
If the structure could be represented by a lumped-parameter
model with one degree of freedom, as shown in Fig. 3(a), then the
force equation is

F(t)ycos(an — B) =m @ I:L(t)_:l

di? | _cos o
d 3 i
cl_[ y()]_’_kl[y()]
dt | cos ay cos a

which may be Laplace transformed to give the following dynamic
compliance:

-+

y(s) 1

- 2
Fon [s—2+ B 1:|
wy wi

¢ = cos (on — B) cos an, w? = ki/m, & = ¢1/2kym)"/?

and 1/k,, = gi/k

(6)

where

The dynamic compliance of a lumped-parameter model repre-
genting a structure with two degrees of freedom, Fig. 3(b), can
be shown to be

:lés_)_ = g + g
Fls) kl[s—zq_;.Z_‘S‘s—}-l] kﬂ[_s;z+3§23+1:| M
wy® (&1 w2 (&

2
where gy = cos (ay ~— 3) cos a1, g2 = cos (e — B) cos az w?
= kym, ws = kom, 61 = ¢;/2 (bym)"?, and 8y = /2 (Jom)'/2.  The
right side of equation (7) may be written with a common denom-
inator to obtain the conventional time-constant form for a trans-
fer function. Therefore
82
(3

28, >
+=s+1
wﬂ

y(s)
o = ®
F(S) s? 251 SZ 252
pl—+—s+1){—+—s+1
W w w? oy
where
1 g1, 92 Gy 4 gaen®
= o7 o= ——
k., ky + k2, o+ g

and
_ glw252 + gzwlax

6 =
* (gl + gz)wu

In general, the response of a structure with n-degrees of freedom
can be written, if the system is linear, as [15]

b. TWO DEGREES OF FREEDOM
Fig. 3 Structures with one and two degrees of freedom
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2 26 2 26
(s_+ %541 —s—+—”s+1>...
y(s) w,r W, W W, )
F(s) 225 : 2 2
km(s— Deri){ S+ s} (S + s+
w?  w w? W wg? s
where k,, is the directional static stiffness; wi, w,, ... are the

undamped natural frequencies of the modes of vibration; w,,
Wy, are the undamped natural frequencies of numerator
guadratic factors. The number of denominator quadratic fac-
tors corresponds to the number of degrees of freedom, and the
number of numerator quadratic factors is always at least one less
than that of the denominator. Excitation at forcing frequencies
corresponding to denominator and numerator undamped natural
frequencies results in points of minimal and maximal dynamie
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stiffness, respectively, in the frequency spectrum. It is conveni-
ent symbolically to write the dynamic compliance, equation (9),
in the form

(10)

where @,,(s) represents the normalized dynamic compliance.

The force exciting the structure during chatter, the resultant
cutting force, is a space vector. Therefore, a different dynamic
compliance exists for each possible orientation of the cutting-
force vector and, further, for each possible position of the movable
elements of a machine. Thus it is not theoretically possible to
describe a structure with a unique dynamic compliance, and
whether it is practically possible remains to be resolved.

Since it is not presently possible to compute all the quantities
required to define a mode of vibration, the dynamic compliance
of a structure must be obtained experimentally for each possible
machining operation. The relative displacement, y(t), is meas-
ured normal to the instantaneous cut surface because variations
(chatter) in this direction affects the uncut chip thickness. A
dynamic compliance for a structure having three degrees of free-
dom is shown in Fig. 4. The value of minimum dynamic stiff-
ness (maximum dynamic compliance) will be of significance and
is noted in Fig. 4.

Block Diagram of Chatter Loop

Equation (2), (5), and (10) are the three basic equations re-
quired to define the system. The cutting process is directly
coupled to the structure, and the uncut chip-thickness equation
provides the feedback tie necessary for the possibility of chatter.
The interdependence of the three basic equations can best be
seen in the block diagram, Fig. 5, of these equations. Two feed-
back paths can be distinguished: A negative feedback of position
(primary path) and a positive feedback of delayed position (re-
generative path). The primary feedback path is always present;
the regenerative path may or may not be present because it de-
pends on the value of the overlap factor. If g = 0, then chatter
oceurring will be designated primary chatter;  otherwise,
chatter will be termed regenerative chatter.

Referring to Fig. 5, the depth of cut initially set, u(s), is the
reference or input quantity; the actual depth of cut, u(s), is the
controlled or output quantity. This situation is entirely analo-
gous to a servo loop where a controlled quantity is directly related
to a reference. The transfer function relating uy(s) and w(s) can

20 ———
(=30 Sk
10 = kK, 1
= 8= d |
= |
C £,=70 1
L. 8,005 |
10 E
|y = 150 |
m‘F [ 83=.01
- |
1ok
- 147100
B 8,205 i
ol 't ‘”H [ LHJ il
f 1000
00 FREQUENCY CPS
—soel
/Y
< -180° |-
£ 0
-270° -

-360°

Fig. 4 Dynamic compliance of a siructure with three degrees of freedom
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be obtained by solving the three basic equations sxmultanem]w
or directly from the block diagram. Therefore ‘

u(s) _ 1
uls)

14+ (1 - ,U.e‘“)%- G..(8) {11

If either the dynamic compliance of the structure or the cutting
stiffness is zero, then the actual depth of cut is equal to the set
depth of cut. Since the chatter loop may be treated as a serve,
loop, all the performance indexes of a servo loop (such as abgolyt,
and relative stability, bandwidth, accuracy, and so on) can he
found for the chatter loop. However, only one aspect of per.
formance, that of stability, is of interest in the chatter prohler,.

Stahility of Chatter Loop

A linear system is stable, by definition, if its impulse response
decays with time. This definition of stability can be translateq
into the following mathematical requirement: A linear lumped-
parametersystemis stable if, and only if, all roots of its characterig-
tic equation have negative real parts. If any or all of the rootg
have positive real parts, then the system is unstable. If any of
the roots have zero real parts, the rest having negative real parts,
then this condition represents the borderline of stability and solu-
tions of the characteristic equation are harmonic.

Referring to equation (11) the characteristic equation of the
chatter loop can be identified as

ke
1+ (1 - p.e““)k— G,.(s) = (12)

and stability requires that the roots of this equation be confined
to the left half of the s-plane; i.e., none may be permitted on the
imaginary axis or in the right half of the s-plane. TRoots on
the imaginary axis are of the form s = jw and correspond to
harmonic solutions. These solutions must be found to define
the borderline of stability.

Substituting s = jw into equation (12) and rearranging

k -1
=G (jw) = ——— 13
k. m(jw) = 7 T (13)
The left side of this equation is the product of the harmonic re-
sponse functions of the cutting process and the structure; thatis
jw F(jo jw k,
de)_ TRl UIo) _ % g o) (1)
u(jw)  w(jo) Fjw)  k,

Therefore y/u is obtained by multiplying the dynamic compli-
ance of the structure by k,. The right side of equation (13) will
be denoted
-1
- (5
G, = 1 — et (15)
whose plot can be considered a locus of critical points. Substi-
tuting equations (14) and (15) into equation (13) yields

CUTTING

PROCESS STRUCTURE
( ), DYNAMICS DYNAMICS
u_ls

+ -~ ufs) [k Fls) |1 G (s)
c km m

PRIMARY FEEDBACK PATH

TIME

DELAY

RCF ENERATIVE FEEDBACK PATH -Ts
pe

y(s)

Fig. 5 Block diagram of chaiter loop
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Intersections of the plot of y/u with points on the ecritical
locus give harmonic solutions of the characteristic equation
which define the borderline of stability. Absence of har-
monic solutions, i.e., absence of intersections, does not
necessarily, in general, imply system stability; this must be
established from other information. However, in this case, inter-
sections occur only for sufficiently large values of cutting stiff-
ness. ‘This correlates with experimental observations of chatter
occurring for sufficiently large widths of cut. Therefore, if the
plot of y/u does not intersect any point defined by G,,, then the
system is absolutely stable; i.e., stable at all speeds.

The critical locus, given by G, is a function of 4 and a periodic
function of w7. The quantity wT is the phase angle in radians
of the regenerative wave on the machined surface at the face of
the tool relative to the wave actually being eut. It is convenient
to express this phase angle as an integral number of cycles, n, plus
a fractional portion of a cycle, v; that is

T = 27x(n + v) = 2xfT

ep?

17

where v is defined as the phase factor and has a range 0 < v < 1.
Since » is an integer, e ¥?™ = 1 and, therefore, ¢927(»+n)

= ¢~2™_ Thus, the equation describing the eritical locus can be
written
-1
G'-‘LU = 1 — “e—j27rv (18}
and may be uniquely plotted as a function of u and ». It is

shown in the Appendix that contours of constant u and constant
v are circles on a polar plot, and these contours are plotted in Fig.
6.2 Note that for 4 = 1, the critical locus is a line parallel to the
imaginary axis through the point —0.5 -+ j0; if the system is to
be stable at all speeds, then the plot of y/u cannot enter the region
to the left of this line. Therefore, u = 1 imposes serious con-
straints on stability. As u decreases toward zero, the plot of
y/u cannot enter the regions within the circles if the system is to

2 Although these contours have the same equation as that of M and
a-contours of a Nichol’s chart in feedback control theory, their inter-
pretation is entirely different. M-contours of a Nichol’s chart define
a measure of relative stability; intersection with an M-contour does
not indicate instability. However, u-contours are loci of critical
points, and intersection with a u-contour indicates instability.

-240°

_2‘00 _330
et

-180° 380°

-150° ~30°

'y
LT

Fig. 6 Polar plot of critical loci
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be stable at all speeds. For p = 0, the critical region reduces to
a geometric point, —1 -+ 7O, which is the conventional Nyquist
critical point.

A stability chart may be plotted from information given by the
points of intersection. At an intersection point, a value for f is
obtained from the plot of y/u and a value for » is obtained from

the appropriate (u-contour) locus of eritical points. Egquation
(17) can be written

1 f

~ = 19

T v+ n (19)
Critical speeds (N = 1/T for a lathe) are computed using equa-
tion (19) withn = 0,1,2,3, ...

Examples of Computed Stahility Charls

Let us consider two examples to illustrate the stability theory
developed in the preceding section. The theory consists of
making a polar plot of the function y/u, equation (14), on spe-
cially prepared paper having contours of constant p and constant
v. As the width of cut is gradually increased, then k, is increased
and the plot of y/u expands and intersects with the appropriate
p-contour. If k. is of such a value that no intersections occur,
then the system is absolutely stable; if intersections occur then
the system is unstable at speeds given by equation (19).

The theory leads to use of the critical loci plotted in polar form,
Fig. 6; however, from a computational viewpoint, polar plotting
is not the best choice. The linear-amplitude ratio scale on polar
paper does not permit convenient plotting of large ranges and,
further, the graph of y/u must be computed and plotted for each
value of k,. Use of a gain-phase plot of the critical loci, as shown
in Fig. 7, avoids these inconveniences. A gain-phase plot of
y/u is made on transparent paper which is then superimposed on
the plot of eritical loci. As %, is increased, the plot of y/u is
shifted vertically until intersections occur.

For example, consider a structure which can be approximated
by a model with one degree of freedom. The dynamic compli-
ance is given by equation (6), and let us assume that f; = 30 eps

and §; = 0.05. Therefore,
y(s) ke/ko
ws) s \? . 2(0.05)
— 1
(27r 30> T ors0 8

Substituting in s = jw = j 2 f, the corresponding harmonie-
response function is obtained.

Y kel kom

L <—f~>2 + 7 200.05) L

A (20)
30 30

A gain-phase plot of this function is superimposed on the plot of
critical loci and slid upward until the first intersection occurs as

-360°-330°-300°-270°-240°~210° ~180°-150°-120°-80° -60° ~30°
5Q=f

/s

U

Fig.7 Gain-phase plot of critical loci with plot of y/u for a siructure with
one degree of freedom superimposed
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Table | Tobulation of intersection points and critical speeds
Critical speeds, rps——o
ke/km f, cps v n=0 n=1 n=2 n=3 p=4
0.105 31.5 0.758 42.4 181 115 842 .65
0.12 30.8 0.843 36.5 16.7 10.85 8.0 6.36
32.62 0.67 48.7 19.5 12.2 8.89 6.08
0.15 30.56 0.884 34.5 16.2 10.6 7.86 6.25
33.65 0.63 53.4 20.65 12.8  9.26 7.9
0.20 30.45 0.916 33.2 15.9 10.43 7.77 6.20
35.1 0.6 58.8 22. 13.5 9.75 7.63
0.50 30.24 0.968 31.2 15.35
42.35 0.545 7.7 27 .4
1.0 30 0.99 30.1
52 0.526 08.8
shown in Fig. 7 (assuming p = 1). This first intersection gives when the structure has one degree of freedom,. Referring g 1
values of k./k,, = 0.105, f = 31.5 ¢ps, and v = 0.758 cycles; the 8 and assuming a width of cut such that o/ = 015, :’;n‘p . :

critical speeds for a lathe are then N = 31.5/(0.758 + n) =
42.4, 18.1, 11.5, 8.42, 6.65, 5.48 rps, and so on. As k./k, is
increased further, say, to k,/k,, = 0.20 as shown in Fig. 7, there
are two points of intersection with values of f = 30.45 cps, v =
0.916 cycles and f = 35.1 ¢ps, » = 0.6 cycles. Critical speeds
for these two points are N = 30.45/(0.916 + n) = 33.2, 15.9,
10.48, 7.77, and so on, and N = 35.1/(0.6 + n) = 58.5, 22, 13.5,
9.75, and so on, respectively. Therefore as k,/k,, is progressively
increased, two points of intersection occur and the data from these
points with the computed critical speeds are used to construct
the tabulation shown in Table 1. Note from the table forn = 0
that when k,/k,, = 0.105 the critical speed is 42.4 and when &, /k,,
= 0.12 the critical speeds are 36.5 and 48.7 which bracket the
speed of 42.4 rps. As k,/k, increases, each successive eriti-
cal speed range brackets the former speed range for a given value
of n and defines a lobe of the stability chart. The stability chart,
shown in Fig. 8 for this example, is a superposition of the lobes
which occur for n = 0, 1, 2, 3, and so on. As n increases the
overlapping of the lobes become more pronounced so that large
values of n need not be considered. The chatter frequency, fo,
along the lobed borderline of stability, also shown in Fig. 8, gives
a somewhat saw-toothed characteristic typical of chatter [5].
Note also in Fig. 8 that the asymptotic and tangent borderlines
of stability are coincident and given by k,/k,, = 0.105. Itcan be
shown easily that the asymptotic borderline of stability is given
by

| &5

S = 25, + 26,

m

(21)

=

50—
fo 40 L
30

1.0

x| x
3 o

UNSTABLE REGION

2 LOBED
) BORDERLINE
OF STABILITY
s ASYMPTOTIC
. BORDERL.INE
<7 Y OF STABILITY _
ol | |STABLEREGON| | | |
0 20 40 60 80 100

SPINDLE SPEED, RPS

Fig. 8 Stability char! for o system with a siructurs having one degree of
freadom
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as speed is increased there are bands of chatter-free p(n'f(,”\l‘“. )
this type of behavior is typical of chatter. Machine f)p“ )
often vary speed, among other things, in an effort t, elimin
chatter.
It is important to note from the first example that single pois
of intersection of the two loci (locus of y/u and critical lovis
gave rise, as k,/k,, was increased, to a complete lolud bovdertine
of stability. As a second example, consider a structirn with
three degrees of freedom having the dynamic compliance showy
in Fig. 4. A gain-phase plot of y/u is made and BUPErio posi
on the critical loci (let 4 = 1) as shown in Fig. 9. As kel i
inereased, note that there are two basic single-point intermsetione
(ke/k, = 0.055, f = 69.6, v = 0.28; k. /k, = 0.0, f - 314
v = 0.75) each of which will give a complete lobed borderline o
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Fig. 9 Gain-phase plot of critical loci with plot of v/ for a siruciurs with
three degrees of freedom superimposed
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stability. A tabulation of data similar to Table 1 can be made
and the two lobed borderlines are plotted in Fig. 10. A third
pasic intersection will occur (at ,/k,, = 1.5, F = 148.3, and v =
0.23) but the resulting borderline is not significant since it is en-
closed by the other borderlines. These two borderlines, because
of modes at 30 cps and 70 cps, overlap to form the solid curve in
Fig. 10 which is the exact or lobed borderline of stability for this
case. The chatter frequency along the borderline of stability is
also plotted in Fig. 10. Note the jumps in frequency from near
30 cps to near 70 cps.  The agymptotic borderline occurs at k,/k.»
= 0.055 since this value gives the largest chatter-free width of cut
at all speeds.

It is apparent from this example that the exact borderline of
stability can be very complex when several modal frequencies are
significant since a superposition of many individual borderlines
is involved. Extreme care would have to be used in measuring
guch a stability chart in order to detect chatter bands. How-
ever, chatter frequency can serve as a clue in complex cages since
abrupt changes occur when more than one mode is involved in
the chatter. Also the quantity », the number of integer cycles
on the workpiece between tool tip and tool face, can be a guide in
measurements. If n is large, which occurs at lower spindle
speeds, there is much overlapping of lobes and chatter-free bands
are less distinet. If » is small then such bands should be detecta-
ble. Quite possibly, especially at low n-values, an experimental
value for » could be obtained and interpreted.

Physical interpretation of the lobes can be made. The lobe
for n = 0 corresponds to a fraction, v, of a period cut on the work-
piece. There is one complete period and a fraction for n = 1,
and two complete periods and a fraction for n = 2, and so on.
Thus by simply counting the number of chatter marks an indica-
tion of chatter bands is obtained. When there are many such
marks, the lobes overlap extensively and chatter-free bands may
not be detectable unless spindle speed is controlled precisely.
1f all experimental evidence is evaluated carefully, then measured
and computed stability charts should agree.

A Simplified Stability Criterion

Although the theory is somewhat involved, the construction of
a stability chart for a given structure compliance is a relatively
routine task. However, the practicality of stability charts as an
index of chatter performance is another matter. Many factors
complicate the usefulness of such stability charts.

1 There is not a unique stability chart for a given machine
because the dynamic compliance is not unique. This is the most
gerious difficulty; all other difficulties are minor in comparison.

2 The dynamic compliance of a structure, both amplitude and
phase, is not easily measured. However, this difficulty could be
overcome with adequate test equipment.

3 1t is difficult, if not impossible, to obtain a precise value for
the overlap factor.

4 The lobed and tangent borderlines are too involved to be of
practical value.

With these comments it is obvious that simplifications must be
made. Let us choose u = 1, since this value is the most pessi-
mistic for chatter, and examine the requirements for the asymp-
totic borderline of stability. Referring to Fig. 6, it is apparent
that no intersections will occur if the minimum (i.e. the most
negative) real part of y/u, which will be denoted

k. .
P Re[Gn(jw)]min

is greater than —1/2.
if

That is, the system is stable at all speeds

k. . 1
k_ Re[Gm(]w)]min> - ;

“

(22}

m

Equating both sides yields the cutting stiffness for the asymptotic
borderline of stability. Therefore
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ke = O RelG, ()

{23)
This result was first obtained by Tlusty [4]. It is too complex
for use as a chatter criterion since measurement of the real part of
the structural compliance is required.

A simpler chatter performance index can be obtained by refer-
ring to Fig. 6 and observing that absolute stability is assured if
the plot of y/u is confined to a ecircle with radius of 1/2; that is,
absolute stability will result if

A
|

Now the maximum value of the structure dynamic compliance is

ke, . 1
‘ < IG(jw)| < >

&

(24)

1/k4.  Therefore
k 1
= <= 25
ks "2 (25)
and the simple borderline of stability is given by
kq
k, == 26
2 (26)

This stability eriterion requires that the minimum dynamic
stiffness be measured for all possible cutting-force orientations.
This is still a difficult experimental job, but phase measurement
is not required. Let us apply this criterion to the two examples
discussed. If the structure has one degree of freedom it can be
shown that k; = 28,(1 — 8:%)'/%k,, so that the simple stability
borderline is given by k, = 8i(1 — 872)/%,,. For the first ex-
ample & = 0.05 and the simple criterion gives k, = 0.0499 k,,
which roughly compares with the asymptotic borderline at &, =
0.105k,,. For the second example, b, = k,,/14.8 and the simple
criterion gives k, = 0.0338 k,, which compares fairly well with the
asymptotic borderline at k, = 0.055 k,. The simple stability
criterion is always conservative and gives a better approximation
in complex cases than for simple cases.

Gonelusions

A chatter theory has been developed which permits computa-
tion of asymptotic and lobed borderlines of stability for a ma-
chined-tool system having a structure with n-degrees of freedom
and described by a measured dynamic compliance. Dynamics
of the cutting process are neglected. Harmonic solutions of the
system characteristic equation define the borderline of stability
and are found by superimposing a plot of y/u, which is the
product of cutting stiffness and structural dynamic compliance,
on a special chart of critical loci. Points of intersection define
harmonic solutions and give all the data required to plot a sta-
pility chart. Although the theory is illustrated by a single-point
tool in a turning proces it should be extendable to other metal-
cutting processes.

Stability charts are complicated and a multiplicity of such
charts exists for a particular machine tool. A simple stability
criterion which relates directly to the minimum dynamic stiffness
of the structure is proposed as an index of chatter performance.

Fundamentally, chatter is caused by a lack of adequate dy-
namic stiffness (for all cutting-force orientations) in the machine
structure. This difficulty can be traced to the lack of damping
inherent in structures. 1f damping ratios on the order of J-
= (.5 were characteristic of structures, chatter would still be pos-
sible but it would be a relatively minor problem. It is the
dynamic stiffness which results in the principal region of stability
enclosed by the asymptotic borderline. Lobes on the stabil-
ity chart, which result in alternate bands of chatter and chatter-
free performance, are caused by the regenerative effect of the
machined surface. The region of stability at lower speeds en-
closed by the tangent borderline is not yet fully resolved but may
be deduced to be a result of geometry and/or dynamics of the
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cutting process. These comments give a physical explanation
for the three basic features (borderlines of stability) of a typical
stability chart.

A theory of chatter offers few clues to the design of chatter-free
machines. However, it does indicate the scope of the problem.
The most significant result is the emphasis on structures with
higher dynamic stiffness (lower dynamic compliance), but this
fact has been known (except for the confusion of weight for
rigidity and static for dynamic stiffness) for a long time. The
chatter loop is complicated and about the only portion of the loop
under the designer’s control is the structure, which is very com-
plex. The prevention of chatter will remain a difficult task for
the machine-tool designer until techniques are developed to im-
prove structure dynamic stiffness.
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APPENDIX

It will now be shown that contours of constant u and contours
of constant » are circles when plotted on a polar (or rectangular)
diagram. Equation (18) can be rearranged so that

S (27)
M 1+ G,
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Since G,, i8 a complex quantity, it can be written in the

. ~ . . . . — . fQ‘n
G.,= = + jy. Substitution into equation (27) gives "
1. x -+ jy
_— e]~TFV = —— 5
u Y+ gy (2,

Converting both sides of equation (28) to polar form and simpl;
fying

1 22 PAWA] .

- /360 y = % /mn“‘ ;/' — tan=1 V.y\
o (1422 + y2]e T L4 g

(29
Equation (29) may be written as the following two equationg:
1 (z2 + ¥/
- = 1 2 211/4 (30)
poo (14 2)2 + g

Y
1+ =z

K
360 ¥ = tan~! ¥_ tan !
z

Equation (30) may be manipulated algebraically to give

+ t ’ + P B ) o
z T yc = 1 - (32)

Therefore, contours of constant w on a polar (or rectangular)
plot are circles with center at

1 0
Tt

and radius of m/(l — u?).
Taking the tangent of both sides of equation (31) yields

tan (360v) = tan | tan—! ¥ _ tan 1 —L:I 3%
T 1+ 2

The trigonometric identity

tan ¢ — tan
tan (a — B) = mmnﬁﬂ (34)
may be used to evaluate the right side of equation (33).
Therefore,
¥y _ ¥
tan (360 ) = 1+e (35)

Loy ( v
"z \l+4z

which may be manipulated algebraically to obtain

1 2
" 2tan (360 v)

- ’l(l PR b >/ SNED
T2 [tan (360 »)]2

Therefore, contours of constant » on a polar (or rectangular)
plot are circles with center at

(z + )2+ I:y

2 "7 5 an (360 )
and radius of
1 1 12
4
2 { - [tan (360 »)]*|

Tt is further apparent that these circles always go through the
points (—1 + j0) and (0 + 50).
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