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Theory of Self·Excited Machine·Tooi Chatter  
Contribution to Machine-Tooi Chotter 
Resecrch-l 
Self-excited chatter, an instability of the cutting process in combination with the ma-
chine structure, is a basic performance limitation of a machine tool. A theory is de-
veloped which permits calculation of borderlines of stability for a structure having 
n-degrees of freedom and assuming no dynamics in the cutting process. Harmonic 
solutions of the system characteristic equation are found using a special chart, and the 
resulting data are used ta plot a stability chart. However, an infinite number of such 
stability charts exists for a given machine because the structure dynamics vary with, 
cutting-force orientation. This fact makes a simpler index of chatter performance de-
sirable. A simple stability criterion is proposed which states that the directional cut-
ting stiffness must be less than one ha(f the minimum directional dynamic stiffness of 
the structure for each force orientation ta assure chatter-free performance at all spindle 
speeds. Thus chatter-free performance can be fundamentally identified with adequate 
structural dynamic stiffness for all cutting10rce orientations. Suck a broad requ'Ïre-
ment for dynamic stiffness is dijJicult ta meet in the design stage since structural c1wrac-
teristics are not easily predicted and controlled. ivIachine testing with continuaI im-
provements in the structure ta increase dynamic stiffness is currently the best way to 
combat chatter. 

type. In practice, chatter resultillg from forced vibmtions is 
traced by comparing the frequellcy of chatter ta the frequency of 

CRATTER is a nuisance to metal cutting and can be possible forcing functions. Once the driving force causing the 
demonstrated on any chip-producing machine too1. The effects chatter is identified, the driving force and/or the dynamic com-
of chatter are aH adverse and affect surface finish, dimensional pliance (inverse of dynamic stiffness) spectrum of the machine 
accuracy, toollife, and machine life. structure are reduced to permissible values. 

Undulations in the surface finish are commonly referred to as The violent chatter often observed during cutting is caused by 
chatter or chatter mmks. A great many factors contribute self-excited vibrations. The theory of self-excited chatter has 
to chatter marks. In the case of milling, the basic mechanics of the taken on increased importance because of advancements in ma-
cutting process itself results in undulations (cutter marks) in the chining speed and the machining of thermal-resistant alloys. In 
finish. Velocity variations in slide motion, perhaps caused by recent years many theories [1, 2, 3] 1 have been proposed to ex-
unbalance in the drive system, servo instability, 01' stick-slip plain self-excited chatter, but no single theory covers al! the ef-
friction, can result in periodic variations in the finish. However, fects observed. 
forced and self-excited vibrations are the major sources of the A typical stability chart for a machine tool is shown in Fig. 1. 
finish problem referred to as chatter. An examination of this chart will aid in defining clearly the prob-

Forced vibrations can result from unbalance of rotating mem- lem of computing self-excited chatter and indicate the achieve-
bers and/or impacts by a multitooth cutter. The theory of forced ment of published theories toward the solution of this problem. 
vibrations is rather well developed compared to the self-excited Referring to Fig. 1, three borderlines of stability can be identified 

which for classification purposes will be called lobed, tangent, 
Contributed by the Production Engineering Division and presenl,ed and asymplotic. The lobed borderline of stability is the 

al, the Winter Annual Meeting, New York, N. Y .. November 29- exact borderline and may be approximated with the asymptotic
December 3, 1964. of THE .AME1UCAN SOCIETY OF MECHANICAL ENGI- borderline or more closely with the tangent borderline. TheNEER:'l. Manuscripl, received al, ASME Headquarl,ers, August 10.  
1964. Paper No. 64-WA/Prod-13. 1 Numbers in brackets designate References at end of paper.  

---Nomenclaturll----------------------------
C machining constant (usually on the order of km = direetional static stiffness of structure (slope of 

75 deg), deg curve of F versus y), lb/in. 
c" c" Cl, damping coefficients of modes of vibration of k" k2, k . . = spring constants of modes of vibration of struc-

" structure, lb sec/in. ture, lb/in 
F resultant cutting force or vector force exciting m = equivalent nmss of structure, lb sec'/in. 

the structure, lb N = spindie speed, rps 
1 frequency, cps number of degrees of freedom of structure, di-

10 chatter frequency along lobed borderline of mensionless 
stability, cps n, an integer = 1\ integer number of cycles eut on workpiece (dur-

(JI, g" g" directiona1 factors, dimensionless ing chatter ) between too1 tip and tool face, 
Gm norma1ized dynamic compliance of structure, cycles 

dimension1ess S, mean shear strength of metal being cul" psi 
k, static directional cutting stiffness (slope of s Laplace operator, sec- l 

������ of P versus u), lb/in. 1'" clelay time between tool tip and too1 face (T = 

k d minimum directional dynamic stiffness in dy- liN fOl' 1al,he, T = 1/2N for drill, and T 
namic stiffness spectrum of structure, lb/in. (Continued on next page) 
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asymptotic, tangent, and lobed borderlines of stability are pro-
gressively more difficult to compute but, fartunately, are 
progresBively less important from a practical viewpoint. Each of 
these borderlines may be attributed to a particular physical 
phenomenan. 

The asymptotic borclerline of stability is the principal barcler-
tine since it defines the maximum width of eut which will result 
in stable cutting at aIl speeds. If spindle speed is chosen care-
fully, especially at lower speeds, then the tangent and lobed 
borderlines may indicate a larger stable width of cut. However, 
this methad of speed selection is not practical since a different 
stability chart exists for each orientation of the resultant cutting 
force and for each possible position of the movable elements of a 
machine too1. 

Several thearies have been published which gave calculation 
procedures for sorne stability borderlines, Tlusty [4] has salved 
the important problem of computing the asymptotic borc!erline 
for a structure with n-degrees of freedom assuming negligible 
cutting dynamics. Tobias and Fishwick [5, 6, 7] have made an 
exact solution to the three borderlines of stability for a structure 
with one degree of freedom and have developed the concept of 
penetration rate to account for the region of stability at lower 
speecls; i.e., the area bounded by the asymptotic and tangent 
borderlines. However, the concept of penetration rate has not 
met with general acceptance since other explanations exist for 
this region [13]. If this region is nat accounted for, then the 
tangent borderline becames coincident with the asymptotic 
borderline. 

Gumey and Tobias [8] and Peters [9] have published similar 
approaches to the problem of computing the asymptotic and 
lobed borderlines of stability for a structure with n-degrees of 
freedom and assuming negligible cutting-process dynamics. How-
ever, these techniques are computational1y inconvenient to apply. 

The purpose of this paper is to show that self-excited chatter 
can be represented by a feedback loop. Analysis of this loop 
using feedback control theory yielcls a straightforward method of 

calculating the asymptotic and lobed bOl'derlines of ",.','" , 
machine-tool system with a structure having ��������������� C', 

and assuming negligible cutting-pracess dynamic3. 

In order to derive the feedback loop representinc,-
cutting process will be illustrated with a ������������ 
fonmilg orthogonal cutting on a lathe as snoVv'll �� ����� :;C',-
taol is mounted rigidly and the feed rate is adjusted ���������� 
average or steady-state depth of cut, uo(t). In this ,,, (';1(1,'._,., 

condition, the ��������� maintains a certain deflection ièéll;S,d 

the steady·state cuttmg force. Equations will be �������� ah"" 
this point of equilibrium. " 

������� Chip-Thidmess Equation 
Referring to Fig. 2: the instantaneous depth of cut, u(O, is d". 

creased as the workpIece moves away from the cutting tno!' ',., 
as y(t) increases, Further, if the workpiece moves ������� fm'm \;',;' 
tool, a lump is left on the workpiece. This lump inercasrs Lbe 
uncut chip thickness one revolution of the wark Of T ;;(l,' 

later. Hence the instantaneaus uncut chip thicknesB ean Il<' 
written 

l((t) = uo(t) - y(t) + J.Ly(t - T) 
where 

1T=-
N 

and fJ. is the overlap factor. The overlap factor accollill;s fol' I;IU' 
overlapping, of successive cuts; i.e., it defines the porl;ioll of t.\lll 
previous cut which overlaps the present eut. In a ��������� 0P"l'll' 
tian such as threading, the previously machined slll'f,we t10(,H nol 

WORKPIECE AND 
MACHINE TOOL STRUCTURE 

Fig. 2 Culler in a lurning operalion 

---Nomllnclature---------------------------
l/zN for milling machine), sec 

time, sec 
U instantaneous uncut chip thickness, in. 

Uo average or steady-state uncut chip thickness, 
in. 

WI width of cut (measured along cutting edge of 
tool), in. 

y relative displacement between tool and work-
piece normal to machined surface, in. 

z = total number of cutting edges on cutter 
CI top rake angle of tool, deg 

Cil, Cl2, Cla,. . • angle of modes of vibration of structure relative 
ta a line normal ta machined surface, deg 

13 angle between resultant cutting force and a line 
normal to machined surface, deg 
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(h, 02, 0", . , 

fJ. 
v 

T 
w = 27Tf 

""1, W2, "-'J, ... 

damping ratios of modes of vibration of struc, 
ture, dimensionless 

damping ratios of numerator quadra;ic f:dol"B 
of dynamic compliance of structure, dunen-
sionless 

overlap factor, dimensionless 
phase factor-a fractional portion of a llydeeut 

. d' h tt ) bol;,iV"ell coolon workplece ( urmg c a el' " <-

tip and tool face, cycles 
= friction angle, deg 

angular frequency, rad/sec • " 
undamped natural frequencies of modes 01 VI-

bration of structure, rad/sec , . f nl1nler:lT.i)rundamped natural frequenCles 0 ��� .. , phlllce ()lquadratic factors of dynanue corn , 
structure, rad/sec 

TransactiollS ot the AS ME 



affect the present uncut chip thickness and, therefore, fJ. = O. 
However, for most machining operations, such as orthogonal 
cu tting, fJ. = l. 

The overlap factor also may be used to account for the geo-
metrical effects of rounding at the tool cutting edge and of tool 
clearance angle. Both of these effects tend ta smear the ma-
chined surface and thereby reduce the amplitude of periodic 
'lariations in the machined surface. It is difficult to make a pre-
cise definition for fJ.; however, it is certainly bounded between 
zero and unitYi i.e., 0 ::; fJ. ::; 1. An overlap factor of unitYis the 
most critical value from the viewpoint of chatter. 

Laplace transforming equation (1) yields 

u(s) = uo(s) - y(s) + fJ.e-T'"(s) (2) 

Cutting-Process Equation 
The resultant cutting force, F(t), is related to the instantaneous 

uncut chip thickness, u(t), by the dynamics of the cutting process. 
The differential equations describing the dynamic behavior of 
the cutting process have not been written from the physics of 
metal cutting. Although much work has been done on cutting 
process dynamics [10-13], a definitive experimental result has 
not been published. However, the steady-state behavior of the 
cutting process has been analyzed by Merchant [14]. If the 
dynamics are neglected, then Merchant's equations can be com-
bined to give 

(3) 

where k. is the static directional cutting stiffness, or simply cut-
ting stiffness, and is given by 

(4)k. = . C . ( )Sill - Sill T - a 

The quantities S." C, and T in equation (4) are determined by 
the workpiece material, and ais obtained from the tool geometry. 
Therefore, the cutting stiffness is directly proportional to the 
width of cut for a given workpiece material and tool geometry. 

Laplace transforming equation (3) gives 

(5) 

The direct proportionality between resultant cutting force and 
lmcut chip thickness is the simplest approximation that can be 
made to the cutting process. 

Structure Equation 
The vector cutting force ads to displace the workpiece and the 

structure of the machine. Therefore the dynamic compliance 

a. ONE DEGREE OF FREEDOM 

y(s) 

F(s) 
km ( 

b. TWO DEGREES OF FREEDOM 
>";g. 3 Slru<lures wilh one and Iwo degrees of freeciom 
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characteristic of the structure is of interest from the viewpoint of 
chatter. Machine-tool structures are continuous systems and, 
therefore, are described by partial differential equations. These 
are formidable equations with complex boundary conditions and 
constraints. In most cases the dynamic compliance may be 
approximated adequately using a lumped-parameter analysis. 
If the structure could be represented by a lumped-parameter 
model with one degree of freedom, as shown in Fig. 3(a), then the 
force equation is 

d' [ y(t) ]FU) cos (al - (3) = m - --
dt' cos al 

d [ y(t) ] [ y(t) ]+ CI - -- + k l --dt cos al cos al 

which may be Laplace transformed to give the fol1owing dynamic 
compliance: 

y(s) 1 
F(s) (6) 

where 

cJ!2(klm )1h 

and l/km = g,/k1 

The dynamic compliance of a lumped-parameter model repre-
senting a structure with two degrees of freedom, Fig. 3(b), can 
be shown ta be 

y(s) 

F(8) (7) 

where gl = cos (al - (3) cos al, g, = cos (a, - (3) cos a2, WI' 
= k,m, w,' = k,m, ch = ct/2 (klm/h , and 0, = c./2 (k,m)'h. The 
right side of equation (7) may be written with a common denom-
inator to obtain the conventional time-constant form for a trans-
fer function. Therefore 

y(s) 
(8)

F(s) 

where 
g,w,' + g,wI' 

gl + g, 
and 

g,w,o, + g,w,o,
Oa (gl + g,)wa 

In general, the response of a structure with n-degrees of freedom 
can be written, if the system is linear, as [15] 

(9) 
8' 201 ) ( 8' 20, ) ( 8' 20, )- + - s + 1 - + - s + 1 - + - 8 + 1 ... 

Wl2 WI w,' W, W3' W3 

where km is the directional static stiffness; Wh W2, ... are the 
undamped natural frequencies of the modes of vibration; W a , 

Wb, ... are the undamped natural frequencies of numerator 
quadratic factors. The number of denominator quadratic fac-
tors corresponds to the number of degrees of freedom, and the 
number of numerator quadratic factors is always at least one less 
than that of the denominator. Excitation at forcing frequencies 
corresponding to denominator and numerator undamped natural 
frequencies results in points of minimal and maximal dynamic 
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stiffness, respectively, in the frequency spectrum. It is conveni- be obtained by solving the three basic equations simultaneow" ent symbolica11y to write the dynamic compliance, equation (9), or directly from the block diagram. Therefore .I. 
in the form 

u(s) 1 
y(s) 

(10)
F(s) 

uo(s) 

where Gm(s) represents the normalized dynamie compliance. 
The force exciting the structure during chatter, the resultant 

cutting force, is a space vector. Therefore, a different dynamic 
compliance exists for each possible orientation of the cutting-
force vector and, further, for each possible position of the movable 
elements of a machine. Thus it is not theoretica11y possible to 
describe a structure with a unique dynamic compliance, and 
whether it is practically possible remains to be resolved. 

Since it is not presently possible to compute all the quantities 
required to define a mode of vibration, the dynamic compliance 
of a structure must be obtained experimenta11y for each possible 
machining operation. The relative displacement, y(t), is meas-
ured normal to the instantaneous cut surface because variations 
(chatter) in this direction affects the uncut chip thickness. A 
dynamic compliance for a strueture having three degrees of free-
dom is shown in Fig. 4. The value of minimum dynamic stiff-
ness (maximum dynamic compliance) will be of significance and 
is noted in Fig. 4. 

Block Diagram of Chatter Loop 
Equation (2), (5), and (10) are the three basic equations re-

quired to define the system. The cutting process is directly 
coupled to the structure, and the uncut chip-thickness equation 
provides the feedback tie necessary for the possibility of chatter. 
The interdependence of the three basic equations can best be 
seen in the block diagram, Fig. 5, of these equations. Two feed-
back paths can be distinguished: A negative feedback of position 
(primary path) and a positive feedback of delayed position (re-
generative path). The primary feedback path is always present; 
the regenerative path may or may not be present because it de-
pends on the value of the overlap factor. If}J. = 0, then chatter 
occurring will be designated prùnary chatter; otherwise, 
chatter will be termed regenerative chatter. 

Referring to Fig. 5, the depth of cut initially set, uo(s), is the 
reference or input quantity; the actual depth of cut, u(s), is the 
controlled or output quantity. This situation is entirely analo-
gous to a servo loop where a controlled quantity is directly related 
to a reference. The transfer function relating llo(S) and u(s) can 

20 
'km 

10 k=14.8 
d 

f =702
82=.005 

�������� 

fo=IOO 
8 =.05 ' 0 

.0 l  '--__L-LI.u".u"_..l.'-:.'..l.i-LI_'[-L'CL'1_-'--.c....J..w..r1iJjJ111 
1 1000 

0" 

-90" 
1 YLF" -180° 

-270° 

If either the dynamic compliance of the structure or the cuttin ,. 
stiffness is zero, then the actuai depth of eut is equal to the �� 
depth of eut. Since the chatter loop may be treated as a servo 
loop, a11 the performance indexes of a servo loop (such as absolute 
and relative stability, bandwidth, accuracy, and so on) can he 
found for the chatter loop. However, only one aspect of per-
formance, that of stability, is of interest in the chatter problem. 

Stability of Chatter Loop 
A linear system is stable, by definition, if its impulse response 

decays with time. This definition of stability can be translate,! 
into the following mathematical requirement: A Iinear lumped-
parametersystemis stable if, and only if, all roots of its characteris_ 
tic equation have negative real parts. If any or all of the roots 
have positive real parts, then the system is unstable. If any of 
the roots have zero real parts, the l'est having negative real parts, 
then this condition represents the borderline of stability and solu-
tions of the characteristic equation are harmonie. 

Referring to equation (11) the characteristic equation of the 
chatter loop can be identified as 

(12) 

and stabi!ity requires that the roots of this equation be eonfined 
to the left half of the s-plane; i.e., none may be permitted on the 
imaginary axis or in the right half of the s-plane. Roots on 
the imaginary axis are of the form s = jw and correspond to 
harmonie solutions. These solutions must be found to define 
the borderline of stability. 

Substituting s = jw into equation (12) and rearranging 

-1
kc G (' )  (13)- m JW = 1km - }J.e- iwT 

The left side of this equation is the product of the harmonie re-
sponse functions of the cutting process and the structure; that is 

y(jw) = F(jw) y(jw) = � G (jw) (14)
u(jw) u(jw) F(jw) km m 

Therefore y/u is obtained by multiplying the dynamic compli-
ance of the structure by kc' The right side of equation (1:3) will 
be denoted 

(15 ) 

whose plot can be considered a locus of critical points. ��������

tuting equations (14) and (15) into equation (13) yields 

\ils) 

PRIMARY FEEDBACK PATH 

TIME 
DELAY 

������������ FEEDBACK PATH � ... ������ 

fig. 4 Dyncmic complicnce of a slructure wilh Ihree degrees of freedom Fig. 5 Siock diagram of chalier loop 
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y(jw) 
-- �� = G (15)v(jw) ap 

Intersections of the plot of y /u with points on the critical 
locus give harmonie solutions of the characteristic equation 
",hich define the borderline of stability. Absence of har-
monie solutions, i.e., absence of intersections, does not 
necessarily, in general, imply system stability; this must be 
established from other information. However, in this case, inter-
sections occur only for sufficiently large values of cutting stiff-
ness. This correlates with experimental observations of chatter 
occurring for Bufficiently large widths of cut. Therefore, if the 
plot of y/u does not intersect any point defined by Gap, then the 
system is absolutely stable; i.e., stable at aIl speeds. 

The criticallocus, given by Gap, is a function of p. and a periodic 
function of wT. The quantity wT is the phase angle in radians 
of the regenerative wave on the machined surface at the face of 
the tool relative ta the wave actually being cut. It is convenient 
to express this phase angle as an Integral number of cycles, n, plus 
a fractional portion of a cycle, JI; that is 

wT = 271"(n + JI) = 271"fT (17) 

where JI iB deflned as the phase factor and has a range 0 S; JI S; 1. 
Bince n iB an integer, e -jbn = 1 and, therefore, e -j2'l"(p+n) 

= e-j2 'l"P. Thus, the eqllation describing the criticallocus can be 
written 

-1 
(18) 

and may be uniquely plotted as a function of p. and JI. It iB 
shawn in the Appendix that contours of constant p. and constant 
pare circles on a polar plot, and these contours are plotted in Fig. 
6.' Note that for p. = 1, the criticallocus is a line parallel to the 
imaginary axis through the point -0.5 + JO; if the system is ta 
he stable at aU speeds, then the plot of y/u cannot enter the region 
ta the left of this line. Therefore, p. = 1 imposes serious con-
straints on Btability. As p. decreases toward zero, the plot of 
y/u cannot enter the regions within the circles if the system is to 

2 Although these contours have the same equation as that of M and 
a-contours of a Nichol's chart in feedback control theory, their inter-
pretation is entirely different. lVI-contours of a Nichol's chart define 
a measure of relative stability; intersection with an JVI-contour does 
not indicate instability. However, .a-contours are loci of critical 
l'oints, and intersection with a J.l-contour indicates instability. 

-60 0-120 0 

Fig. 6 Polar plot of critical loci 

JOiiil11al of Enginill'Jring for lildiJsiry 

be stable at ail speeds. For p. = 0, the critical region reduces to 
a geometric point, -1 + JO, which is the conventional 2':yquist 
critical point. 

A stability chart may be plotted from information given by the 
points of intersection. At an intersection point, a value for fis 
obtained from the plot of y/u and a value for JI is obtained from 
the appropriate (p.-contour) locus of critical points. Equation 
(17) can be written 

1 f (19)
T JI+n 

Critical speeds (N = l/T for a lathe) are computed using equa-
tion (19) withn = 0, 1,2,3, ... 

Examples of COi11puted Stability Charts 
Let us consider two examples to illustrate the stability theory 

developed in the preceding section. The theory conBists of 
making a polar plot of the function y/u, equation (14), on spe-
cially prepared paper having contours of constant p. and constant 
v. As the width of cut is graduaily increased, then ka is increased 
and the plot of y/u expands and intersects with the apprapriate 
p.-contour. If ka is of such a value that no intersections occur, 
then the system is absolutely stable; if intersections accur then 
the system is unstable at speeds given by equation (19). 

The theory leads to use of the criticalloci plotted in polar form, 
Fig. 6; however, from a computational viewpoint, polar plotting 
is not the best choice. The linear-amplitude ratio scale on polar 
paper does not permit convenient plotting of large ranges and, 
further, the graph of yilt must be computed and plotted for each 
value of ka' Use of a gain-phase plot of the criticalloci, as shown 
in Fig. 7, avoids these inconveniences. A gain-phase plot of 
y/u is made on transparent paper which is then superimposed on 
the plot of critical loci. As ka is increased, the plot of y /u is 
shifted verticaily until intersections occur. 

For example, consider a structure which can be approximated 
by a model with one degree of freedom. The dynamic compli-
ance is given by equation (6), and let us assume thatf, = 30 cps 
and 01 = 0.05. Therefore, 

y(s) 
urs) 

Substituting in s = jw = j 271" f, the corresponding harmonic-
response function is obtained. 

y kjkm 
(20)-:;; = 1 _ (L)' + .2(0.05) L 

30 J 30 

A gain-phase plot of this function is superimposed on the plot of 
critical loci and slid upward until the first intersection occurs as 

101---"-0---.-----------
1 

58 
1 ,0.05 

i 
1 

1 

1 i i 1 10 �� 
-360'-330'-300'-270'-240'-210' -180' -150'-120'-90' -60' -30' 0 

150 0 1 

Lt 
fig. 7 Gain-phase plot of crilical loci wilh plot of YI u for a slruclure wilh 
one degree of freedom superimposed 
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jable 1 'ab...lalion of Intersection points and crÎtlcal speeds 

kJkm f, cps JI n = 0 
Critical speeds, 

n = 1 n = 2 
rps 
n = 3 

0.105 31.5 0.758 42.4 18.1 11.5 842 
0.12 30.8 0.843 36.5 16.7 10.85 8.0 

32,62 0.67 48.7 19.5 12.2 8.89 
0.15 30.56 0.884 34.5 16.2 10.6 7.86 

33.65 0.63 53.4 20.65 12.8 9.26 
0.20 30.45 0.916 33.2 15.9 10.43 7.77 

35.1 0.6 58.8 22. 13.5 9.75 
0.50 30.24 0.968 31.2 15.35 

42.35 0.545 77.7 27.4 
1.0 30 0.99 30.1 

52 0.526 98.8 

n = 4 
6.65 
6.36 
698 
6 ',-._ù 
7.28 
620 
7.6:3 

shown in Fig. 7 (assuming J.L = 1). This first intersection gives 
values of ke/k", = 0.105,f = 31.5 cps, and li = 0.758 cycles; the 
critical speeds for a lathe are then N = 31.5/(0.758 + n) = 
42.4, 18.1, 11.5, 8.42, 6.65, 5.48 rps, and so on. As ke/km is 
increased further, say, to ke/k", = 0.20 as shown in Fig. 7, there 
are two points of intersection with values of f = 30.45 cps, li = 
0.916 cycles and f = 35.1 cps, li = 0.6 cycles. Critical speeds 
for these two points are N = 30.45/(0.916 + n) = 33.2, 15.9, 
10.43,7.77, and so on, and N = 35.1/(0.6 + n) = 58.5,22,13.5, 
9.75, and so on, respectively. Therefore as ke/km is progressively 
increased, two points of intersection occur and the data from these 
points with the computed critical speeds are used to construct 
the tabulation shown in Table 1. Note from the table for n = 0 
that when kJkm = 0.105 the critical speed is 42.4 and when kJkm 
= 0.12 the critical speeds are 36.5 and 48.7 which bracket the 
speed of 42.4 rps. As ke/km increases, each successive criti-
cal speed range brackets the former speed range for a given value 
of n and defines a lobe of the stability chart. The stability chart, 
shown in Fig. 8 for this example, is a superposition of the lobes 
which occur for n = 0, l, 2, 3, and so on. As n increases the 
overlapping of the lobes become more pronounced so that large 
values of n need not be considered. The chatter frequency, fo, 
along the lobed borderline of stability, also shown in Fig. 8, gives 
a somewhat saw-toothed characteristic typical of chatter [5]. 
Note also in Fig. 8 that the asymptotic and tangent borderlines 
of stability are coincident and given by kJkm = 0.105. Tt can be 
shawn easily that the asymptotic borderline of stability is given 
by 

20, + 20,' (21) 

-

fo :: 1 

30 1 �  
kc 
km 

1.0 

,. 
.8 ':l, 
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Fig. 8 Slability chart for a system with a slruciure haYi"g one degree of 
freedom 
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when the structure has one degree of freedom. net' "'1'; • . 
� Li, (l'( l () l ' 

8 and assuming a width of eut such that k /k = 0 1,- ����� .1.; 
C na • d, ������� ����� 

as speed is increased there are bands of chatter-free 1)(' ']' ,,: .•• ' 
• o'. ,1 0, r������ i 'ft � 

thlS type of behavlOr 18 tYPlCal of chatter Mal'lll'llt" . . ..,. , ��������������� 

often vary speed, among other thmgs, m an ell'ort to dim;lur, 
chatter. 

�� is impo.rtant to note from ��� first exmnple thaL a �������� !>I li Il ; 
of mtersectlOn of the two lOCI (locus of y/u anü eriLil':tl 1''''11:-< 
gave rise, as kJkm was increased, to a complete 10bl)ll bOI',lerlill" 
of stability. As a second example, consider a ����������� wit.h 
three degrees of freedom having the dynamic compli:ulI:n "hOWLi 

in Fig. 4. A gain-phase plot of y/u is made and ������������������ 
on the criticalloci (let J.L = 1) as shown in Fig;.!J. A:; /.;-f/,:,.. i.' 
increased, note that there are two basic single-point. lllLel':;''''l.illll" 
(kclkm = 0.055, f = 69.6, li = 0.28; lee/km = (J.O!l, f ::1.1\ 
li = 0.75) each of which will give a complete lobel! bm./t,,·lilll' <Ir 

Fig.9 Gain-phase plot of criticalloci with plot of yi" for ",Irudur" witt. 
three degrees of freedom superimposed 
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stability. A tabulation of data similar to Table 1 can be made 
(lnd the two lobed borderlines are plotted in Fig. 10. A third 
basic intersection will occur (at kc/km = 1.5, f = 148.3, and Il = 
0.23) but the resulting borderline is not significant since it is en-
closed by the other borderlines. These two borderlines, because 
of roodes at 30 cps and 70 cps, overlap to form the solid curve in 
Fig. 10 which is the exact or lobed borderline of stability for this 
case. The chatter frequency along the borderline of stability is 
also plotted in Fig. 10. Note the jumps in frequency from near 
30 cps to near 70 cps. The asymptotic borderline occurs at k./km 
"" 0.055 since this value gives the largest chatter-free width of cut 
at aIl speeds. 

It is apparent from this example that the exact bo,derline of 
stability can be very complex when several modal frequencies are 
significant since a superposition of many individual borderlines 
is involved. Extreme care would have to be used in measuring 
snch a stability chart in order to detect chatter bands. How-
ever, chatter frequency can serve as a clue in complex cases since 
abrupt changes occur when more than one mode is involved in 
the chatter. Also the quantity n, the number of integer cycles 
on the workpiece between tool tip and tool face, can be a guide in 
measurements. Tf n is large, which occurs at lower spindle 
speeds, there is much overlapping of lobes and chatter-free bands 
are less distinct. If n is small then such bands should be detecta-
ble. Quite possibly, especiallyat low n-values, an experimental 
value for Il could he obtained and interpreted. 

Physical interpretation of the lobes can be made. The lobe 
for n = 0 corresponds to a fraction, Il, of a period cut on the work-
piece. There is one complete period and a fraction for n = 1, 
and two complete periods and a fraction for n = 2, and so on. 
Thus by simply counting the number of chatter marks an indica-
tion of chatter bands is obtained. When there are many such 
marks, the lobes overlap extensively and chatter-free bands may 
not be detectable unless spindle speed is controlled precisely. 
If aIl experimental evidence is evaluated carefu11y, then measured 
and computed stability charts should agree. 

ASimplified StabHity Critlerilln 
Although the theory is somewhat involved, the construction of 

a stability ���� for a given structure compliance is a relatively 
routine task. However, the practicality of stability charts as an 
index of chatter performance is another matter. JYlany factors 
complicate the usefulness of such stability charts. 

1 There is not a unique stability chart for a given machine 
because the dynamic compliance is not unique. This is the most 
serious difficulty; aIl other difficulties are minor in comparison. 

2 The dynamic compliance of a structure, both amplitude and 
phase, is not easily measured. However, this difficulty could be 
overcome with adequate test equipment. 

3 It is difficult, if not impossible, to obtain a precise value for 
the overlap factor. 

4 The lobed and tangent borderlines are too involved to be of 
practical value. 

With these comments it is obvious that simplifications must be 
made. Let us choose JL = 1, since this value is the most pessi-
mistic for chatter, and examine the requirements for the asymp-
totic borderline of stability. Referring to Fig. 6, it is apparent 
that no intersections will occur if the minimum (i.e. the most 
negative) real part of y/u, which will be denoted 

Re [Gm(Jw)] min > -- (22) 

is greater than -1/2. That is, the system is stable at aIl speeds 
if 

k. . 1 
-
km 2 

Equating both sides yields the cutting stiffness for the asymptotic 
borderline of stability. Therefore 

Jouual of Engineering for 1ndusiry 

km (23)k. = - 2P. [G (' )....."e m JW ]min 

This result was fu'st obtained by Tlusty [4]. It is too complex 
for use as a chatter criterion since measurement of the real part of 
the structural compliance is required. 

A simpler chatter performance index can be obtained by refer-
ring to Fig. fi and observing that absolute stability is assured if 
the plot of y/u is confined to a circle with radius of 1/2; that is, 
absolute stability will result if 

(24) 

N ow the maximum value of the structure dynamic compliance is 
l/kd • Therefore 

k. 1-<-k d 2 
(25) 

and the simple borderline of stability is given by 

k dk =-• 2 (26) 

This stability criterion requires that the mlIllmum dynamic 
stiffness be measured for aIl possible cutting-force orientations. 
This is still a difficult experimental job, but phase measurement 
is not required. Let us apply this criterion to the two examples 
discussed. If the structure has one degree of freedom it can be 
shown that k d = 20,(1 - (1 2)lhkm so that the simple stability 
borderline is given by k. = O,( 1 - (1 2)'hkm. For the first ex-
ample 0, = 0.05 and the simple criterion gives k. = 0.0499 km 
which roughly compares with the asymptotic borderline at k. = 
0.105 km' For the second example, k d = k m/14.8 and the simple 
criterion gives k. = 0.0338 km which compares fairly wel1 with the 
asymptotic borderline at k. = 0.055 km' The simple stability 
criterion is always conservative and gives a better approximation 
in complex cases than for simple cases. 

Conclusions 
A chatter theory has been developed which permits computa-

tion of asymptotic and lobed borderlines of stability for a ma-
chined-tool system having a structure with n-degrees of freedom 
and described by a measured dynamic compliance. Dynamics 
of the cutting process are neglected. Harmonic solutions of the 
system characteristic equation define the borderline of stability 
and are found by supenmposing a plot of ylu, which is the 
product of cutting stiffness and structural dynamic compliance, 
on a special chart of critical loci. Points of intersection define 
harmonic solutions and give aIl the data required to plot a sta-
oility chart. Although the theory is illustrated by a single-point 
tool in a turning proces it should be extendable to other metal-
cutting processes. 

Stability charts are complicated and a multiplicity of such 
charts exists for a particular machine too!. A simple stability 
criterion which relates directly to the minimum dynamic stiffness 
of the structure is proposed as an index of chatter performance. 

Fundamentally, chatter is caused by a lack of adequate dy-
namic stiffness (for a11 cutting-force orientations) in the machine 
structure. This difficulty can be traced to the lack of damping 
inherent in structures. Tf damping ratios on the order of 0-
= 0.5 were characteristic of structures, chatter would still be pos-
sible but it would be a relatively minor problem. It is the 
dynamic stiffness which results in the principal region of stability 
enclosed by the asymptotic borderline. Lobes on the stabil-
ity chart, which result in alternate bands of chatter and chatter-
free performance, are caused by the regenerative effect of the 
machined surface. The region of stability at lower speeds en-
closed by the tangent borderline is not yet fully resolved but may 
be deduced to be a result of geometry and/or dynamics of the 
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cutting process. These comments give a physical explanation 
for the three basic features (bol'derlines of stability) of a typical 
stability chart. 

A theory of chatter ollers few clues to the design of chatter-free 
machines. However, it does indicate the scope of the problem. 
The most significant result is the emphasis on structures with 
higher dynamic stiffness (lower dynamic compliance), but this 
fact has been known (except for the confusion of weight for 
rigidity and static for dynamic stiffness) for a long time. The 
chattel' loop is complicated and about the only portion of the loop 
under the designer's control is the structure, which is very com-
plex. The prevention of chatter will remain a difficult task for 
the machine-tool designer until techniques are developed to im-
prove structure dynamic stiffness. 
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APP[NOIX 
It will now be shown that contours of constant p, and contours 

of constant v are circles when plotted on a polar (or rectangular) 
diagram. Equation (18) can be rearranged sa that 

Since Gcp is a complex quantity, it eun be written in the forn: 
Gcp = x + jy. Substitution into equation (27) gives 

x + jy
1 + x + jy 

Converting both sides of equation (28) to polar form and sirnpll_ 
fying 

(x' + V') h / y-----=----,...,- tan -1 - tan-1 -L 
[(1 + x)' + V']" 1 + x 

(2()) 

Equation (29) may be written as the following two eqllations: 

(x' + y,)I/z 
(30)}Jo [(1 + x)' + V,]'/z 

y
360 v = tan-1 -- tan-1 y (31)x 1 + x 

Equation (30) may be manipulated algebraically to give 

1)' (p,),(x + 1 _ p,' + y' = 1 _ p,' 

Therefore, contours of constant p, on a polar (or rectUllglllar) 
plot are circles with center ut 

and radius of p,/( 1 _ p,'). 
Taking the tangent of both sides of equation (:31) yields 

tan (3601') = tan [tan-1 JI.. - tan-1 -y-] (3::) 
x 1 + x 

The trigonometric identity 

tan a - tan {3 
tan (a - (3) (34)

l+tanatanfJ 

may be used to evalnate the right side of equation (33). 
Therefore, 

y y 

x 1 + x tan (360 l') (35) 

1 + � C� �� 
which may be manipulated algebraically to obtain 

(x + tl' + [y - 2 tan ���� l')]' 
. 1 ( 1 )lh}'

= { 2' 1 + [tan (360 l')]' (36) 

Therefore, contours of constant v on a polar (or rectangular) 
plot are circles with center at 

1 . 1 ]- - +J-----[ 2 2 tan (360 l') 

and radius of 

2. {l + 1 rh 
2 [tan (360 l')]' J 

It is further apparent that these circles always go through tbe(27) 
points (-1 + JO) and (0 + JO). 
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