Stability of Interrupted Cutting by

P. V. Bayly*

Washington University, St. Louis, MO 63130

J. E. Halley

OpSource Inc., St. Louis, MO 63112

B. P. Mann

Washington University, St. Louis, MO 63130

M. A. Davies
UNC Charlotte, NC 28233

Temporal Finite Element Analysis

Chatter in milling and other interrupted cutting operations occurs at different combina-
tions of speed and depth of cut from chatter in continuous cutting. Prediction of stability
in interrupted cutting is complicated by two facts: (1) the equation of motion when cutting
is not the same as the equation when the tool is free; (2) no exact analytical solution is
known when the tool is in the cut. These problems are overcome by matching the free
response with an approximate solution that is valid while the tool is cutting. An approxi-
mate solution, not restricted to small times in the cut, is obtained by the application of
finite elements in time. The complete, combined solution is cast in the form of a discrete
map that relates position and velocity at the beginning and end of each element to the
corresponding values one period earlier. The eigenvalues of the linearized map are used

to determine stability. This method can be used to predict stability for arbitrary times in
the cut; the current method is applicable only to a single degree of freedom. Predictions
of stability for a 1-degree of freedom case are confirmed by experiment.

[DOL: 10.1115/1.1556860]

1 Introduction

Control of chatter in milling is of great importance to manufac-
turers. Chatter is a dynamic instability caused by ‘“‘regeneration of
waviness.” Koenigsberger and Tlusty [1] and Tobias [2] devel-
oped models of chatter in the form of delay-differential equations
that were analyzed in the frequency domain. Stability predictions
from these analyses are approximate in the case of milling, or
interrupted turning, since they rely on the fundamental assumption
of continuous cutting.

In milling, cutting is interrupted: each tooth enters and leaves
the work piece (Fig. 1). While in the cut, force is related to tool
displacement. When out of the cut, force is not dependent on tool
displacement. In effect, the coefficients that relate displacement to
cutting force change from zero (when the tool is free) to large
numbers (when the tool is cutting). While it is not difficult to
incorporate such effective variation of coefficients into time-
domain simulation [3], it is very inefficient to use time-marching
numerical simulation to explore parameter space. Altintas and
Budak [4], Davies et al. [5,6], Corpus and Endres [7], and In-
sperger and Stepan [8] have proposed analytical methods that ex-
plicitly account for the interrupted nature of milling. These au-
thors have generated stability diagrams analogous to the classical
“lobes” obtained by Tlusty, Tobias, and their co-workers [1,2].
Corpus and Endres [7] capture the intermittency by including
many harmonics in the Fourier series of the time-varying coeffi-
cients. This approach loses accuracy as the relative time in the cut
decreases.

Davies et al. [5,6] examine the limit in which the time in the cut
is infinitesimal. The cutting process is modeled as an impulse, the
magnitude of which is proportional to amount of material re-
moved. By matching successive ‘“impulse responses” Davies
et al. obtain a discrete representation of the system (a map). The
stability properties off the map are then investigated analytically.
Bayly et al. [9] extend this work by considering short, but not
infinitesimally short, time in the cut. The equation of motion dur-
ing cutting was analyzed by the method of weighted residuals
([10,117).

The work of Davies et al. [5,6] and Bayly et al. [9] loses accu-
racy as the time in the cut becomes longer. To look at longer times
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in the cut, Insperger and Stepan [12] derive an approximate ex-
pression for the time delay in the form of an integral, obtain a
large (120X 120, e.g.) time-periodic matrix differential equation,
and use Floquet theory to determine stability boundaries.

In this paper we describe an alternative analysis of interrupted
cutting with arbitrary time in the cut. The method is based on the
use of multiple finite elements in the time domain. Position and
velocity are matched at the beginning and end of each element.
The regenerative cutting force depends on values of the displace-
ment one period earlier, and a discrete version of the system is
obtained. The eigenvalues of the linear map determine its stability.
This method is used to explore the effects of speed, depth of cut,
and time in the cut for 1-DOF cutting. Experimental evidence is
presented to confirm stability predictions.

2 Model and Analysis

A generic model of interrupted turning is shown in Fig. 1.
Davies et al. [5,6] showed that this model also approximates very
low radial immersion milling. In this model the system is gov-
erned by two different equations of motion; the equation to be
used depends on whether the tool is in contact with the work
piece. Either the tool or the work piece can move; the other is
assumed rigid.

2.1 Free Vibration. When the tool is not in contact with the
work piece, the equation of motion is:

mi+cx+kx=0 @))]

which has the solution x()=c e™'+c, e where \|,=— o,
*iw,. If we let 1=t as the tool leaves the material (the position
shown in Fig. 1), we find a state transition matrix is obtained that
relates the final state of free vibration to the initial state:
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This equation is true for every period, so that for all n:
x(nT)| _ x((n—1)T+t.)
vy | T i n— 1) T 41 |
where M is the 2 X2 matrix in Eq. (2).

3

Transactions of the ASME



AN

Cutting vel.

v

te

A

te

A

o~

a n-1 n=1 n-l n-1
{ ll} {aﬂ} {asl} {ass}
a; 9y ) s,

Fig. 1

n n n n
{a,,} {aﬂ} {all} {ass}
A ay a3 a3y

Schematic diagram of the interrupted cutting process. When the tool is in contact with the work

piece, the cutting force is proportional to the cross-sectional area of the uncut chip. The tool vibrates
freely when not in contact with the work piece. The coefficients a;; and aj, specify the initial position
and velocity of the tool as it enters the j'" element; the coefficients a;3 and aj, specify the position and

velocity of the tool at the end of the j* element.

2.2 Vibration During Cutting. When the tool is in the cut,
its motion is approximately governed by the linear equation

x+x(t—=T)} 4)

Since this equation cannot be solved exactly, an approximate so-

lution for the displacement of the tool during the j" element of the
th period of revolution is assumed in the following form [10]:

4
x(t)= 2] a;',-

Here T(t)=t—nT—2{;lltk is the “local” time within the j™ ele-
ment of the n'™ period, the length of the k" element is 7, and the
trial functions ¢,;(7) are the cubic Hermite polynomials. On the j
element these functions are:

mi+cx+kx=Cb{hy.—
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These functions are only adequate for describing approximately
one wavelength of periodic motion. They are defined so that their
end conditions are either zero or unity [9]. Because of the special
end conditions of the trial functions, the initial and final displace-
ments and the initial and final velocities of each element can each
be specified by a single coefficient:

Initial conditions: x(tg;)=aj,, v(tg;)=a}, (7a)
n

Final conditions: x(r{;)=aj;, w(1};)=al,, (7b)

Jj—1

J
nT+ Y, tk>; t'{,:(nﬂE tk). (7¢)
k=1 ’ k=1

On the j® element the velocity, acceleration, and time-delayed
displacement are

Where: #;,=
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X(l) E /1 dt ’ t) E ajl dt2 ’
4
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The displacement and velocity of the tool at the entry into the cut
are specified by the coefficients of the first two basis functions on
the first element: a'f; and af,. For the remainder of the elements,
the position and velocity at the end of one element are equal to the
position and velocity at the beginning of the next element. For
each element, two more equations are needed, in order to solve for
the unknown coefficients a; and aj, . For the last element, these
coefficients correspond to the position and velocity of the tool as
it exits the material.

Substitution of the assumed solution into the equation of mo-
tion leads to a non-zero error. In the method of weighted residuals,
the error is “weighted” by a set of test functions, Pp(7), p= 1,2
and the integral of the weighted error is set to zero to obtain two
more equations per element [10]. The test functions are chosen to
be the simplest possible functions: #;(7)=1 (constant) and
i, (7)=7/t;—1/2 (linear). On the j™ element, two more equations
are thus obtained.

I,- 4
j :m(z a;li(z)ilsz
0 i=1

x(t—=T
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Evaluation of the definite integrals leads to two equations that are
linear in the coefficients of the trial functions. These equations can
be written as a single matrix equation for the j" element.

4
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n

ajl
[Nll Ny, Ny N14} aj _{Cl]
Ny Ny Ny Nyl 43 G,
aj4
ajl n—1
Py Pn P Pul)ap
+ (10)
Py Py Py Poyl| 453
Clj4

MAY 2003, Vol. 125 / 221



where

N,-p=J(j{m&,—-ﬁ-c[ﬁ—%—(k+Cb)qb,-}¢pdT, (11a)
Cp,= J‘Oijth{/jpdT’ (11b)
PiPZJOij(ﬁilﬂpdT. (11¢)

While the tool is in the cut, the position and velocity at the end of
one element are equal to the position and velocity at the beginning

of the next element.
[aﬂ]":[au—l)ﬂ"
aja ag-s)

We can also re-write Eq. (3) (the relationship between the initial
and final conditions during free vibration), using the coefficients
a;; to specify position and velocity:

n n—1
[Zu] :[M]{Zm] )
12 E4
where E is the total number of finite elements in the cut.
Finally, the last three matrix equations can be rearranged to
obtain the coefficients of the assumed solution in terms of the
coefficients at the time of the previous tooth passage (plus a con-

stant vector). The following expression is for the case when the
number of elements, E=3.

12)

(13)
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where the sub-matrices are:
N, = Ny Ny (15a)
VN Nyl ¢
ny=| Ve V] (15b)
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The global matrices, of dimensions (2E+2)X(2E+2), for
larger numbers of elements, E, are obviously analogous.
Equation (14) describes a linear discrete dynamical system, or
map that can be written as
Ad,=Ba,_,+C. (16)
or

a,=Qd,_,+D a7

The eigenvalues of the transition matrix Q=A"'B determine the
stability of the system. In this study, we specify the physical pa-
rameters (mass, stiffness, damping, cutting pressure). For a range
of operating conditions (depth of cut, b, and speed) the transition
matrix is formed and the eigenvalues are found. If the magnitude
of any eigenvalue exceeds one, then the solution is unstable. The
boundaries between stable and unstable cutting are then plotted as
a function of speed and depth of cut. It is important to point out
that the cubic polynomial approximation of the surface is ex-
pected to be accurate over less than a period of vibration. As
speed is decreased or time in the cut is increased, more elements
are needed.

2.3 Simulation. The stability analysis was verified by nu-
merical simulation of the equation of motion (Eq. (4)) allowing
forces to go to zero when the tool is not in the cut. Simulations
were performed using a standard Euler integration scheme [12];
time steps were chosen to ensure at least 100 steps per revolution
or natural vibration period, and convergence of solutions was
checked by further decreasing the time step.

2.4 Experimental Validation. Milling tests were performed
with an experimental flexure designed to mimic the 1-DOF sys-
tem described above. A monolithic, uni-directional flexure was
machined from aluminum and instrumented with a single non-
contact, eddy current displacement transducer. Aluminum (7075-
T6) test samples 6.00 mm thick X 25 mm highX 75 mm long were
clamped on the flexure. Each sample was then milled at a speci-
fied axial depth of cut and spindle speed. A 0.750-inch diameter
carbide end mill with a single flute was used; the second flute was
ground off to remove any effects due to asymmetry or runout.
Feed was held constant at 0.004 in/rev.

The stiffness of the flexure to deflections in the x-direction was
specified to be approximately k~2 X 10° N/m; the measured stiff-
ness was k=2.2X10° N/m. The natural frequency was experi-
mentally determined to be 146.8 Hz and the damping ratio {
=0.0038, which corresponds to very light damping. In compari-
son, the values of stiffness in the perpendicular y- and z-directions
were more than 20 times greater, as was the stiffness of the tool.
The specific cutting pressure in the x-direction (C) was deter-
mined from the rate of increase of cutting force as a function of
chip load during separate cutting tests on a rigid dynamometer
(Kistler Model 9255B). The estimated value was C=2.0
X 10® N/m?*.

The displacement signal was anti-alias filtered and sampled
(16-bit precision, 12800 samples/sec) with Siglab 20-22a data
acquisition hardware connected to a Toshiba Tecra 520 laptop
computer. A periodic 1/rev pulse was obtained with the use of a
laser tachometer to sense a white-black transition on the rotating
tool holder. Samples of displacement were taken at the 1/rev pulse
to provide a Poincaré section. A cut was determined to be stable if
the 1/rev-sampled position of the tool approached a steady con-
stant value (see [13]). This led to clear distinction of stable and
unstable cuts (Fig. 3).

3 Results

3.1 Stability Boundaries. Stability boundaries based on the
current analysis are plotted in Fig. 2 for various fractions of time
in the cut (p=t./T). Instability is indicated when an eigenvalue
of Eq. (19) penetrates the unit circle. Two routes to instability
were predicted by Davies et al. [5,6]: (1) a negative real eigen-
value passes through w=—1; (2) a complex eigenvalue attains
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Fig. 2 Stability boundaries showing the effect of increasing the fraction of time in the cut (p). Param-
eters: k=2.2X10° N/m, f,=146.8 Hz, s=0.0038, C=2.0X10% N/m?2. Number of elements: E=20p. Panel (e)
shows a comparison of TFEA lobes with the stability lobes derived by the impulse approximation of
Davies et al., 2000 (dotted lines). Panel (f) shows a comparison with stability lobes for continuous cutting

derived by the method of Tlusty (1985) (dotted lines).

magnitude greater than 1. These routes are also found using the
current method. As the time in the cut is increased, the number of
elements is increased to maintain the same level of accuracy.
There is no restriction on the time in the cut.

The current method is compared to the method of Davies et al.
[5,6] for p=0.05 in Fig. 2(e). Agreement is very good at higher
speeds, although the method of Davies et al. [5,6] loses accuracy
at low speeds. As the wavelength of vibration becomes short, the
force is less accurately modeled as an impulse. In Fig. 2(f), results
for continuous cutting are compared with stability lobes obtained
by the frequency domain method of Tlusty [12], e.g., which is
exact for the continuous model.

Raw measurements and 1/rev samples of experimental data are
shown in Fig. 3. Stable cuts are clearly indicated by a single
steady-state value of the 1/rev samples. This distinguishes large-
amplitude forced vibration (Fig. 3a,b e.g.) from chatter.

In Fig. 4, stability results from time-domain simulation and
experiment are compared to the predicted boundaries. Cuts are
designated as stable if 1/rev samples converge to a single steady
value [13]. Agreement between numerical simulation and predic-
tions is excellent (Fig. 4(a)). Agreement between experimental
stability data (Fig. 4(b)) and analytical predictions is good. Both
simulations and experiment confirm an increase in stability as
depth of cut is increased from 1 to 5 mm (at ~3560 rpm in
simulation, 3540 rpm in experiment). The experimental regions of
instability are slightly smaller and shifted to the left, perhaps re-
flecting the omission of nonlinearity in cutting force, helix angle,
and rotation of the cutting force vector.

Computation Time: Algorithms were implemented in MATLAB

Journal of Manufacturing Science and Engineering

on a 233 MHz Pentium II PC with 288M RAM. The 50X 10 grid
of time-marching simulations (p=0.1) in Fig. 4(a) took 254 sec-
onds; time finite element analysis (E=2) on the same grid took
0.96 seconds. For the higher resolution used in the figure a 200
X 50 grid was used, taking 19.6 seconds. The frequency domain
analysis in Fig. 2(f) was completed in 1.73 seconds. The time
finite element analysis (p=1.0, E=20, 200X 20 grid) for the fig-
ure took 79.2 seconds. For small times in the cut, time finite
element analysis is efficient and accurate; for full and near-full
immersion, frequency domain analysis has the best combination
of efficiency and accuracy.

4 Summary and Conclusions

In this paper we analyze a model of interrupted cutting with
arbitrary time in the cut, via a set of discrete dynamic equations.
The motion of the tool in the cut is governed by a delay-
differential equation which incorporates the regenerative effect.
The discrete-time equations are obtained by the use of temporal
finite elements while the tool is in the cut. The approximate solu-
tion during the cut is required to match the exact solution for free
vibration of the tool at the beginning and end of each cut. Eigen-
values of the discrete system with magnitude greater than one
indicate instability.

Bounds on the depth of cut for stable cutting are found effi-
ciently via this algorithm and are presented as a function of cut-
ting speed. Experimental results confirm the general stability pre-
dictions of the discrete model. Results also confirm the qualitative
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Fig. 3 Experimental data from continuous sampling (a,c,e,g,i,k) and 1/rev sampling (b,d,f,h,j,l) during mill-
ing of 1-DOF flexure. Parameters are as in Fig. 2; fraction of time in the cut p=0.1. Row 1 (a,b): 2900 rpm, 2
mm DOC, stable; Row 2 (c,d): 3200 rpm, 2 mm DOC, unstable; Row 3 (e,f): 3500 rpm, 2 mm DOC, stable;
Row 4 (g,h): 3550 rpm, 2 mm DOC, unstable; Row 5 (i,j): 3540 rpm, 2 mm DOC, unstable; Row 6 (k,/): 3540

rpm, 4 mm DOC, stable.

predictions of Davies et al. [5,6] of additional stability regions. In
particular, a prediction of this model was confirmed in tests when
stability was obtained at 3540 rpm by increasing the depth of cut

from 1 mm to 5 mm.

In planned future work, the current approach can be refined to
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better describe the process of milling. Directional variation of
cutting force, more modes, and more degrees of freedom may be
included. The use of time finite elements is a powerful and flex-
ible approach to the solution of equations with periodic coeffi-
cients and time-delays.
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Fig. 4 Comparison of (a) predicted stability boundaries (lines) with results from simulation (- stable, x
unstable); (b) experimental data (- stable, x unstable). Parameters are as in Fig. 2; fraction of time in the cut
p=0.1. Note that in experimental cutting tests at 3540 rpm a DOC of 5 mm is stable and a DOC of 1 mm, for
example, is unstable. Analogous behavior is predicted by analysis and observed in simulation.
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