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Abstract

This paper presents a summary of the monitoring methods, signal analysis and diagnostic techniques for tool wear and failure
monitoring in drilling that have been tested and reported in the literature. The paper covers only indirect monitoring methods such
as force, vibration and current measurements, i.e. direct monitoring methods based on dimensional measurement etc. are not included.
Signal analysis techniques cover all the methods that have been used with indirect measurements including e.g. statistical parameters
and Fast Fourier and Wavelet Transform. Only a limited number of automatic diagnostic tools have been developed for diagnosis
of the condition of the tool in drilling. All of these rather diverse approaches that have been available are covered in this study.
In the reported material there are both success stories and also those that have not been so successful. Only in a few of the papers
have attempts been made to compare the chosen approach with other methods. Many of the papers only present one approach and
unfortunately quite often the test material of the study is limited especially in what comes to the cutting process parameter variation,
i.e. variation of cutting speed, feed rate, drill diameter and material and also workpiece material. ! 2002 Published by Elsevier
Science Ltd.
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1. Introduction

Tool wear and failure monitoring has raised quite a
lot of interest among researchers and has consequently
been studied in a number of research projects by a num-
ber of research organisations. The reason for the interest
is that tool condition monitoring is considered important
for the following reasons:

! Unmanned production is possible only if there is a
method available for tool wear monitoring and tool
breakage detection.

! Tool wear influences the quality of the surface finish
and the dimensions of the parts that are manufactured.

! The economical tool life cannot be benefited from
without a means for tool wear monitoring because of
variations in tool life.

! Today tool changes are made based on conservative
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estimates of tool life which does not take into account
sudden failures and at the same time leads to an
unnecessarily high number of changes because the
full lifetime of tools is not taken into account and
consequently valuable production time is lost.

! As a consequence of the above, automated production
control is not really possible without a means for tool
wear monitoring.

The economical values involved in modern manufac-
turing are very high because of the high investments in
the manufacturing equipment and naturally it would be
in the interest of the industry to benefit from the equip-
ment in an optimal way including automated production
with high availability.
In principle, the tool wear monitoring methods can

be classified in two categories, i.e. direct and indirect
methods. With direct methods it is possible to determine
tool wear directly, which means that these methods
really measure tool wear as such. In spite of the many
attempts direct methods such as visual inspection or
computer vision etc. have not yet proven to be very
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attractive economically nor technically. In this paper
only indirect measuring methods such as torque or
vibration are covered. In fact the paper tries to cover all
the indirect methods in drilling that have been found in
the literature search that has been carried out.
There are differences in how well certain monitoring

methods work depending on the purpose they are used
for in tool condition monitoring. Some of the methods
are more effective for detection of a sudden failure and
some are more suited for tool wear monitoring. In this
respect there is even more distinction in the suitability
of the different signal analysis methods. It could even
be claimed that the most effective and reliable methods
for tool wear monitoring are so slow in practise that they
are not suitable for the detection of sudden failures.
Again the paper tries to cover both aspects when individ-
ual analysis techniques are discussed.
Drill wear is a progressive process which takes place

at the outer margin of the flutes of the drill due to the
intimate contact and elevated temperatures at the tool
workpiece contact [1]. However, under constant cutting
conditions drill failure is a stochastic process. The
reasons for varying drill life are the inhomogeneities in
the workpiece and drill materials, the irregularities in the
cutting fluid motion and the unavoidable asymmetry
introduced during the grinding of the cutting edges.
Similarly, as in the case of measuring methods, quite

a number of signal analysis techniques have been tested
for tool wear monitoring. In machining there are many
disturbances and even the process as such can be run
using different process parameters and hence signal
analysis is really needed in order to be able to separate
the wanted information from the rest of the “noise”.
During the recent years quite a lot of effort has been

spent on developing methods for automatic diagnosis of
tool wear because automation of diagnosis is also needed
in order to facilitate automatic production systems.
Especially different types of neural networks have
gained a lot of interest. The attempts to make the diag-
nosis automatic are also covered in this paper.

2. Measuring methods

A summary of the monitoring methods that various
researchers have studied is shown in Table 1. In addition
to the methods that have been tested and described in
each reference, the possible coverage of the effect of
cutting speed and feed rate is shown in Table 1, i.e. the
table shows whether the researchers have tried to cover
the effect of cutting conditions to the measured signals
and calculated parameters. One reason for measuring
cutting speed and feed rate is the use of these as para-
meters in adaptive control systems, e.g. [2].
Torque, drift and feed force together with strain

measurement are all measures of cutting forces and are

treated together in the subsequent study. In Table 1 the
reported strain measurements are tabulated in the appli-
cable force category because strain as such is linked to
the force: force transducers actually measure strain
which then is transposed to force. Spindle motor and
feed drive current are closely related to the forces, i.e.
they too measure the same cutting forces and phenom-
ena, although through a longer measuring chain where
also other factors influence the signals. Again spindle
motor and feed drive current are treated together in the
subsequent studies.
Vibration, sound, ultrasonic vibration and acoustic

emission are actually all vibration measurements,
although the frequency range in each of these differs
and, in addition to that, sound is airborne vibration when
all the others are mechanical vibrations of the structure.
The frequency range in vibration measurements is typi-
cally from about 1 Hz to about 10 kHz (or 20 or 16 kHz
is used as a limit [3]); in sound measurements the range
is from 20 Hz to 20 kHz, which is the range a young
person can hear; in ultrasonic vibration the frequency
range is from 20 kHz to about 80 kHz [4]; and acoustic
emission starts where ultrasonic vibration ends up and
ranges to about 1 MHz. Again all the vibration related
techniques are treated together. In some cases the meas-
ured vibration frequencies do not fall into the limits
defined above and if this is the case then both categories
are marked with “"”. This is the case e.g. for vibration
and ultrasonic vibration which have both been marked
when the band-passed frequency is from 0.5 to 40 kHz,
as it is in [5].

2.1. Torque, drift force and feed force

It is very logical to monitor forces in a cutting process
in order to follow the development of cutting tool wear.
It is generally known that cutting forces increase as tool
wear increases [6]. This is due to the increase of friction
between tool and workpiece. In drilling it is possible to
monitor torque, drift forces (lateral forces affecting the
workpiece) and the feed (thrust, z-axis) force. All of
these have been monitored in Ref. [7]. The idea behind
monitoring torque and feed force is very clear, i.e. it is
expected that these forces change as the tool gradually
wears. The thrust force has been used as the only meas-
ured signal in [1,8–10]. The simultaneous monitoring of
thrust force and torque is rather common (see e.g.
[2,6,11–19]) and special electronics have been
developed for this purpose [11].
Drill wear as such differs to some extent from the

wear of other cutting tools. Due to production tolerances
a drill is slightly asymmetric, therefore it only wears at
one lip until the height of both lips is equal [7,20]. The
second lip, which is now sharper, starts cutting. This
alternating process continues until neither lip has no
more clearance at the margin. In the end the drill sticks
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Table 1
Summary of monitoring methods that have been studied for tool condition monitoring in drilling

Reference Torque Drift Feed Vibration Sound Ultrasonic Acoustic Spindle Cutting Feed Feed
number force force vibration emission motor speed drive rate

current current

[1] " " "
[2] " " " "
[3] " " " " " " "
[4] " " "
[5] " " " " "
[6] " " " "
[7] " " " " " "
[8,9] "
[10] "
[11] " "
[12] " "
[13,36–38] " " " " " " " " " "
[14] " "
[15] " "
[16] " " "
[17] " " " "
[18] " " " " " "
[19] " " " "
[20] " " "
[21] " " " " "
[22–24] " " "
[25] " " " " "
[26] " " "
[27] "
[28] " "
[29] " " " "
[30,31] " "
[32] "
[33] " " "
[34] " " " "

into the workpiece and breaks if the cutting process is
not stopped. Assuming this kind of wear progress gives
reason to monitor the drift forces. In a series of tests
[21] no consistent change of feed force or torque was
observed but a certain change in the drift forces was
recorded. This is again explained to be because first the
cutting edge on one side and then on the other side
wears.
The measurement of thrust force and torque have been

linked to the waviness of the hole surface and especially
the effect of tool wear to the waviness has been studied
in [17]. In the analysis more emphasis has been given
to thrust force than to the torque, i.e. thrust has been
considered a more reliable indicator of tool wear.
Torque, feed force and strain of the table in two direc-

tions have been measured in [22–24]. The strain
measurements actually in their function correspond to
the measurement of drift forces, i.e. they serve the same
purpose. Strain has also been measured in [25], but in
this case located in the spindle and corresponding to the
measurement of thrust force. Torque, drift and feed force
have been also measured in [3] and compared with the
measurement of ultrasonic vibration. Also in [26] torque,

drift and feed force have been measured simultaneously
when comparing two different types of coatings
(titanium nitride and zirconium nitride).
A new method for measuring torque is suggested in

[27]. The technique is based on the measurement of eddy
current. The sensor can be positioned some 0.2–0.5 mm
from the drill shank. This technique is affected by the
distance between the sensor and the drill shank and also
the material of the drill has an effect on the measured
torque. The method is suitable for both static and
dynamic torque measurements and consequently suited
for both wear and failure monitoring. The method has
been patented in Germany.
Based on the tests with copper alloy and a model

described in [19], formulas that define the thrust force
and torque as a function of feed per revolution, drill
diameter and flank wear have been developed and their
applicability has also been tested [6]. It should be noted
that the tests indicated that the increase in cutting speed
over the range studied had no significant effect on work
material strength, and hence it has no significant effect
on cutting forces [6]. In fact the correlation of the
regression formulas with the test data without the
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rotational speed of the spindle is very good (for feed
force R2=0.94 and for torque R2=0.97). It is concluded
that tool wear can be properly estimated knowing the
thrust force and other cutting parameters, especially for
larger tool wear.
Based on tests with different workpiece material hard-

ness, formulas for torque and thrust force have been
developed as a function of Brinell hardness of work
material, diameter of the drill, feed per revolution, aver-
age flank wear and radius at the cutting edge [19]. It is
concluded that the variation in drill life is significantly
influenced by the workpiece hardness. It is speculated
that it could be so that the presence of a few random
workpieces with a high hardness may influence the drill
life much more than a large number of workpieces with
a low hardness. Hence, in an industrial operation, drills
may fail very early or after a long time, depending on
the occurrence of a few workpieces with a high hardness.
This could explain the large variation in drill life
observed in industrial conditions. The workpiece hard-
ness also influences the amplitudes of thrust forces and
torque occurring in a drilling operation. If the variation
in thrust force, on account of changes in flank wear, is
to be significant, the variation in workpiece hardness has
to be held within 5% of the mean hardness value in order
to be able to base the diagnosis of flank wear on the
amplitude of thrust force or torque. This is very difficult
to achieve in industrial castings. Hence, torque or thrust
measurements for monitoring drill wear should be
attempted only after a very close tolerance has been
obtained in the workpiece hardness.

2.2. Vibration and sound

Vibration is widely used for condition monitoring of
rotating machinery. However, vibration has not been
used to the same extent in tool condition monitoring,
probably because as a method it is rather sensitive to
noise which is present in cutting processes. The advan-
tages of vibration measurement include ease of
implementation and the fact that no modifications to the
machine tool or the workpiece fixture are required [20].
However, the disadvantages reported in the literature
include dependency of the vibration signals on work-
piece material, cutting conditions and machine structure.
The work of [20] deals with the development of

vibration-based monitoring methods for detecting break-
age of small size drills (3 mm diameter) and wear of
larger size drills (6 mm diameter). Vibration is measured
both in the transverse and axial direction. The vibration
signals are considered to contain reliable features for
monitoring drill wear and breakage for the following
reasons: the vibrating drill length in the transverse and
axial modes does not change during drilling, thus main-
taining a rather constant mode frequency; the natural fre-
quencies of the transverse and axial modes of the work-

piece–drill system are basically insensitive to drill cross-
sectional size, thus simplifying monitoring for a wide
range of drill sizes; vibrations in the directions Y and Z
are influenced by the torque and thrust force which are
the major excitation sources in drilling.
In the tests reported in [28] three accelerometers were

used each measuring in the direction of one of the three
axes. In [29] both vibration and the use of sound
measurements are discussed. The sound measurement
and analysis is discussed in more detail in [7].
Vibration measurement together with thrust force has

been used in the tests reported in [30,31]. The purpose
of the tests has been to obtain signal for the development
of a diagnosis tool capable of recognizing tool wear. In
the tests tool wear has been recorded with a vision sys-
tem.
In theory, sound measurements could be expected to

give the same information as can be detected using
vibration measurements because in the structural bound-
ary the mechanical vibration of the structure or
tool/workpiece contact is partly transferred to airborne
vibration, i.e. sound. However, quite a number of factors
influence how the mechanical vibration is transferred
and how it takes place at the different frequencies. Also
there is a great difference when the influence of disturb-
ances from outside sources are compared in vibration
and sound measurements. The sound measurements are
more vulnerable than vibration but at the same time it
should be remembered that the operators sometimes or
perhaps actually rather often rely on what they hear
when they define whether the tool is worn or not. In [13]
both vibration and sound measurements together with a
number of other methods have been tested and compared
in drilling, with the result that vibration was the most
effective method of all of the tested methods.
A higher frequency range from 0.5 to 40 kHz for

vibration measurements has been tested with very thin
drills. The reason for looking at this kind of frequency
range is that the rotational natural frequencies fall into
that range since for a drill of 1 mm diameter the natural
frequency could be about 25 kHz and for a drill of 3
mm diameter it could be about 7 kHz [5]. In the reported
examples the band-pass filtered vibration signal has
given more clear indication of both tool wear and failure
than the feed force signal [5].

2.3. Acoustic emission and ultrasonic vibration

The use of ultrasonic vibrations (UEs) in the fre-
quency range from 20 to 80 kHz for tool breakage detec-
tion in various metal cutting processes including drilling
has been tested [4]. The practicality of using ultrasonic
vibrations is explained when compared to other vibration
techniques. Acoustic emission (AE) is seen to suffer
from severe attenuation and multi-path distortion caused
by bolted joints commonly found in machine tool struc-
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tures and restricting the mounting location of the AE
transducer to somewhere very near the tool or work-
piece. The lower frequency signal used for UE analysis
does not suffer such severe attenuation and distortion,
and so the transducer can be placed fairly far from the
chip forming zone. In the low vibration frequency range,
i.e. below 20 kHz, structural modes are prominent. A
common strategy is to compare the amplitudes of several
frequency bands in this range. Particular variation in the
relative strengths of vibration in these bands indicate
process abnormalities such as tool breakage or tool wear.
This method shares the advantage of remote transducer
placement with the UE method but unfortunately is
much more sensitive to machine and tooling variations.
Since structural modes change in complex ways with
machine movement, loading, temperature, and tooling,
this approach generally must be tuned empirically each
time that the process is changed. In contrast, in the fre-
quency range used for UE analysis the structural modes
are so closely spaced that they form a so-called pseudo-
continuum. There are no individual resonances to shift
out of the analysis band with machine movement, load-
ing, and so on.
The applicability of ultrasonic vibration measurement

for the tool wear and failure detection has also been stud-
ied in [3]. In the reference the frequency range in ques-
tion, i.e. from 10 to 70 kHz, is defined as acoustic emis-
sion and the used sensor with non-linear frequency
response is considered as an AE-sensor. However, fol-
lowing Ref. [4], the frequency range in question is in this
context defined as the ultrasonic range. In [3] ultrasonic
vibration is compared with torque, feed and drift force
measurement and proven to be a more effective means
for tool wear and failure detection in drilling. The same
sensor has also been used for measurements in the fre-
quency range from 1 to 5 kHz which normally is con-
sidered mechanical vibration.
Acoustic emission is a phenomenon which occurs

when, for different reasons, a small surface displacement
of a material surface is produced [32]. This occurs due
to stress waves generated when there is a rapid release
of energy in a material, or on its surface.
Acoustic emission with centre frequencies of 200 and

800 kHz and also in a broader band from 100 to 1000
kHz has been tested in [13]. In the tests the 200 kHz
sensor was used for tool wear and the 800 kHz sensor
for tool breakage detection. The broad band sensor was
used for finding the best frequency range for further
investigation. Also in [32] acoustic emission was
recorded in a broad band from 100 to 1000 kHz in order
to monitor tool wear.

2.4. Spindle motor and feed drive current

Spindle motor current is in principle a measure of the
same feature as torque, i.e. they both enlighten how

much power is used in the cutting process and they both
also advise about the dynamics of cutting. It is fair to
claim that torque is a more sensitive way to measure
than is the spindle motor current since the torque sensor
is located close to the cutting tool and e.g. the dynamics
of the electric motor do not influence it to the same
extent that they influence the current measurement.
However, measuring torque is more complicated than
measuring the current of the spindle motor and therefore
the measurement of the current has also been widely
tested and used [13,19,33,34].
Similarly, as spindle current corresponds to torque,

feed drive current corresponds to the measurement of the
thrust force. Again there is some similar difference in
the sensitivity of the methods as described above. The
feed drive current as an indicator of tool wear and failure
has been studied in [13,33,34].
Both feed drive and spindle current have also been

measured in [25]. In these tests it has been possible to
compare the measurement of feed current to the
measurement of thrust force based on the use of strain
gases. It is stated that typically, the strain gage is a better
sensor than the feed motor current sensor for wear diag-
nosis. Nevertheless, the current sensor was used to inves-
tigate whether the cost effective and easily
implementable current sensors alone would suffice.
The reported results in [18] for feed drive current and

spindle power together with feed force and torque are
quite similar. The measurement results show that all the
quantities measured remain at an almost constant level
during the entire tool life-time until the hole in which
the drill totally fails. It is impossible to successfully
apply these measurements as tool-monitoring methods,
stopping the machining after the increase in one or sev-
eral signals above a particular limit value before actual
tool failure. However, the measurements can be used for
tool-breakage detection where the machining operation
is interrupted after tool breakage. With this system, one
workpiece may be rejected because of the tool failure,
but further damage is avoided.

3. Signal analysis

The kind of signal analysis methods used is of some
importance. Sometimes it looks as if some researchers
think that if the measured signal is acceptable then it
would be possible with a clever diagnostic tool to solve
everything. Unfortunately this is not the case. The diag-
nosis always needs to be based on reliable and meaning-
ful information and this is where signal analysis can help
by providing effective features as a basis for diagnosis.
The role of signal analysis could be described as a tool
which tries to pick up the meaningful information out
of the mass of information. In many cases the dilemma
is that the more sophisticated methods need a lot of raw
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signals and it takes time to collect this raw material and
it also takes time to perform the calculations. Conse-
quently, many of the most sophisticated methods are not
suitable, e.g. for tool breakage monitoring. In addition,
the results with a sophisticated analysis function are
influenced by the cutting process, i.e. workpiece
material, type of tool, feed rate and cutting speed which
makes the diagnosis more demanding. On the other
hand, very simplistic methods are fast to use and often
not that sensitive to changes in cutting conditions.
Unfortunately, at the same time they are not so sensitive
to tool wear either. A summary of signal analysis
methods that have been tested, used and reported in the
literature for drill wear and failure monitoring is given
in Table 2.

3.1. Time domain signal

The time domain signal is not very informative as
such, or at least it is very time consuming to look at the
raw signal in graphical format (e.g. with an oscilloscope
[14]). Evaluation of the changes by measuring only the
amplitude of the signal is very complicated and therefore
an RMS-voltmeter is used [21]. Usually a number of

Table 2
A summary of signal analysis methods that have been used for tool condition monitoring in drilling

Reference number Time domain Statistical Auto Fast Fourier Cepstrum Higher-order Wavelet
signal parameters regressive transform analysis spectrum transform

moving spectrum
average

[1] " "
[3] " " "
[4] " "
[5] " "
[6] " "
[7,27,29] " " "
[8] "
[9] " "
[10] " " "
[11] " "
[12] "
[13,36–38] " " " "
[14] " "
[15] " "
[16,30,31] " "
[17] " " "
[18] " "
[19] " "
[20] " " " "
[21] " "
[22–24,39] " " "
[25] " "
[26] " " "
[28] " "
[32] " "
[33] " "
[34] "

statistical parameters such as root mean square (RMS),
arithmetic mean, standard deviation and kurtosis are cal-
culated and these are then used for comparison and diag-
nosis.
With almost all of the measuring signals the most

common parameter to look at is the RMS value, which
also is actually the value that is normally seen if the
signal is drawn with a plotter or looked at with a voltage
meter. The RMS value contains all the energy in the
signal and therefore also all the noise and all the
elements that depend on the cutting process. Therefore,
it is not the most effective parameter but has retained its
place because it is so easy to produce and understand.
Besides, it does actually work when compared to other
statistical parameters. In a series of tests in [13] the RMS
value was compared to seven other statistical parameters,
i.e. arithmetic mean, mean and standard deviation, skew-
ness, kurtosis, maximum and minimum. The comparison
showed that the RMS value is usually not the best but
it is often one of the four best functioning parameters.
In the tests reported in [22–24], mean value together

with the variance of the sensor signals (torque, feed and
drift force) have been calculated for all of the holes. No
significant changes were found in the mean and the vari-
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ance of sensor signals. Therefore, it has been concluded
that the force sensor signals in the time domain do not
show any correlation with drill wear.
Based on the comparison of static and dynamic

components of the feed force and torque, the analysis of
the process-dynamics in drilling is considered essentially
a more delicate instrument to the investigation of the
wear condition than the interpretation of the increase in
static feed force and torque [10].
Due to the great variation in measured signals, i.e.

dynamic behaviour, average values for longer test period
are often used in statistical studies. For example, in [6]
average values of thrust force and torque are used when
developing tool wear models.
Average, peak, RMS values and the area of thrust and

torque have been used as input features in the diagnostic
system described in [16]. These features have been
chosen because of their previous successful application
for on-line monitoring and diagnosis. Furthermore, these
features were justified from the researchers’ experi-
mental observations.
Mean, peak and standard deviation have been used in

the analysis of thrust force and torque signals in [17].
Of the tested statistical parameters, standard deviation
proved to be the best indicator of tool wear and it was
the indicator that is more closely related to the change
in the standard deviation of the hole surface in com-
posite material.
Mean, standard deviation and maximum values of the

thrust force have been studied in [1]. From a series of
drilling experiments conducted in the laboratory, the
gradient of the thrust force has been identified to be a
suitable process parameter for prediction of drill failure.
A Finite Impulse Response filter using a Hamming win-
dow has been designed and used to determine the gradi-
ent of the thrust force data. Experimental evidence
emphasizes the correlation between thrust force and
outer corner wear; it is suggested that the sharp spikes
in the thrust force that are observed under failure con-
ditions are caused by a macroscopic stick–slip phenom-
enon. It has been shown that the proposed approach does
not require considerable tuning for operation under a
wide range of cutting conditions. This would make it
ideally suited for an industrial environment.
Mean value of cutting forces (torque, drift and thrust

force) has been studied in [26]. Also the maximum and
minimum deviations about the mean value have been
studied. In the tests two different types of drill coatings
were used. The mean values were much smaller with
one of the coatings (zirconium nitride) than the other
(titanium nitride). The recorded mean values and devi-
ation from these values have not given a logical indi-
cation of tool wear or alarm for tool breakage.
Smoothed average and standard deviation values of

thrust force have been calculated in [9] for the detection
of poor operation conditions (just before breakage,

breakage, and drilling with broken tool) in micro-drill-
ing. The processing of the data is done in four segments
during each drilling cycle. These studies indicated that
the average force and standard deviation value must be
presented together when used as input to a neural net-
work. Also, the study indicated that the main cause for
failure was not related to tool wear. Most of the time,
the very thin shaft of the drill could not carry the loads
and it broke. In the test cases, total drill life varied
between 0.1 and 10 mm. There was no considerable dif-
ference between the force characteristics after the first
and the 25th hole, except when the tool was broken or
damaged.
A mix of statistical parameters is used in [25]. For

spindle motor current the use of RMS has been justified
in the following way. The low frequency energy of the
spindle motor current is directly proportional to the cut-
ting torque exerted by the tool on the workpiece. As the
tool wears, the torque requirement increases and corre-
spondingly the spindle motor current also increases. The
RMS value of the spindle motor current thus becomes
a valuable feature for wear prediction. In addition to the
RMS value, the change in RMS value with respect to
the first hole is also another good feature, since it indi-
cates the temporal trend of the cutting torque. Also in
the case of feed, motor current RMS value with a corre-
sponding parameter indicating the change are used. For
thrust force (strain gage) measurement the mean value
again together with the corresponding indicator for the
trend are used.
In [3] the emphasis is on the way the wear influences

ultrasonic vibration in different frequency ranges, i.e.
10–20, 20–30, 30–40, 40–50, 50–60 and 60–70 kHz. The
RMS value of the band passed signal has been used.
There is variation in how well tool wear is observed in
the different frequency ranges, although all the time the
percentage increase in RMS value of some of the fre-
quency ranges of ultrasonic vibration are always higher
than is the case with the measured forces. An acoustic
emission sensor in the frequency range from 1 to 5 kHz
(normally considered vibration) has proven to be
especially suitable for tool wear monitoring. Apparently
there have been structural vibration modes that have
their frequency in this frequency range and thus increase
the signal level. Tool failure has also been clearly
detected with the same sensor, though the indication is
clearer at higher frequencies, e.g. from 20 to 40 kHz.
Maximum stable values are used for feed force,

torque, spindle and feed drive current [18]. In the case
of the spindle power and current of the Z-axis motor, the
values represent the difference in the measured quantity
between cutting and idle running at the corresponding
rotational frequencies.
Kurtosis value is defined as the fourth central moment

of a Gaussian distribution and is a measure of peak-
edness of the signal. Therefore, in [20], a lot of emphasis
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is given for this value to be used as a possible indicator
for tool failure. In [20] a new parameter called ratio of
the absolute mean value (RAMV) is also introduced,
since kurtosis was not reliable alone due to its tendency
to decrease when the number of peaks in the signal
becomes high. RAMV represents the ratio of absolute
mean value at the current revolution of the spindle to
the absolute mean value in the beginning of the drilling
process, i.e. RAMV is a normalized mean value calcu-
lated with a time constant of one revolution. The RAMV
value has been used with good success for triggering of
the calculation of kurtosis value together with cepstrum
analysis. In the tests [20] kurtosis value was found to be
insensitive to cutting conditions or changes in the work-
piece hardness.
One way to further process the time domain signal is

to use envelope detection. As such envelope detection
can be used as a practical alternative for analysing signal
containing information at high frequencies and thus
making the analysis process easier [7,29]. The possible
use of moments of the probability distribution of inten-
sities and time of occurrences is also discussed and a
trend index (TI) based on these is described in [7,29].
The published TI curve [7] seems to indicate tool wear
but does not as such give a clear indication of when the
tool should be changed.
When the envelope of a signal is calculated the pro-

cess at first also involves band-pass filtering of the sig-
nal. Low-pass, high-pass and band-pass filtering can all
be regarded as time domain parameters and are often
used, as for example band-pass filtering of the vibration
signal from 0.5 to 40 kHz in [5] in the case of thin drills
in order to concentrate the analysis in the frequency
range where the rotational natural frequency of the drill
is expected to lie. The same approach has been used for
both tool wear and failure detection.
Envelope detection together with the use of the flex-

ible tool breakage algorithm is described in [4]. A funda-
mental quantity used in the signal analysis is the running
mean. To establish an average signal that is not influ-
enced by large pulses, a clipped running mean is com-
puted each time through an algorithm loop. The running
mean is a non-linearly weighted arithmetic average of
the most recent samples. The clipping performs the non-
linear weighting by limiting the contribution of samples
larger than a certain ratio times the current mean. A sus-
picion test compares the most recent sample to an upper
and a lower level, each of which is a multiple of the
current running mean. Together with some other similar
tests based on statistical parameters calculated from the
time domain signal, the test forms an algorithm that is
capable of detecting tool breakage.
It should be noted that tool wear monitoring in drilling

is a very periodic process, i.e. drilling one hole does not
usually last very long. In addition it is possible to recog-
nize certain stages in drilling when monitoring is practi-

cal [32]. Usually in the process the drill first touches the
work material and thereafter progressively drills it, with
a given penetration rate. After the final depth is reached,
the descending mechanism of the drilling machine is
stopped and the drill keeps rotating but without drilling
any further. A moment later the drill is retrieved from the
hole which is then completed. Naturally, the measuring
signals vary as a function of the drilling stage. In [32]
the transient drilling stage (when the drill starts to pen-
etrate into the workpiece) and the stage when the drill
is stopping were found to be the best moments to moni-
tor tool wear using the envelope value of acoustic emis-
sion.

3.2. Autoregressive moving average

Stationary stochastic process data in the form of a sin-
gle, time dependent series can be mathematically mod-
elled as an Autoregressive-Moving Average or ARMA
model [17]. The modelling strategy involves fitting mod-
els in increasing order n starting from 1. The adequacy
of the model may be tested using the conventional F-test.
In condition monitoring the autoregressive parameters or
their relations have often been used for diagnosis of
faults or failures. In [17] the autoregressive model is
based on the use of thrust force and torque signal and
it has been used to define frequencies of modes that have
then been used as the frequencies for which spectral den-
sity has been calculated. This technique has been called
the Dynamic Data System (DDS) technique. With that
it has been possible to get information of the contri-
bution of each of the frequencies to the overall variance
of the data. It is concluded that the dispersion analysis
using the DDS technique shows a very strong correlation
between the changes in the standard deviation of the
lamination frequency (of composite material) component
in the thrust and surface signals. This gives a direct indi-
cation of the change in the surface waviness and can be
used to monitor the drill condition on-line for appropri-
ate replacement of the drill.

3.3. Fast Fourier transform

The widely used Fast Fourier transform (FFT) pro-
vides a means to find out the frequency content of a
measured signal. Assuming the wear influences the fre-
quency contents of the measured signal, FFT then gives
an inside view of this process. Many studies about the
effectiveness of FFT have been reported [7]. Although
the calculation of the power spectrum is a more sophisti-
cated way of signal analysis than the calculation of many
of the statistical parameters in the time domain and thus
is a more powerful tool to get rid of noise and disturb-
ances [13], it does suffer from limitations such as [20]:
(a) materials such as cast iron are not homogeneous and
will affect the amplitude of the vibration measured,
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which may cause false alarms; (b) tool damage in drill-
ing produces a high level of transient vibrations (spikes)
which are largely attenuated by the averaging procedure
typically used in spectrum calculations and this makes
it difficult to extract a discriminating feature to dis-
tinguish the change in the tool conditions; (c) non-uni-
form hardness of the workpiece material, built up edges,
and micro-cracks can also cause false alarms by increas-
ing the vibration amplitude. In order to decrease the
adverse risks explained earlier, the trapezoid method has
been used to calculate the area of the power spectrum
between two frequencies in order to monitor tool wear
with vibration [20].
The power spectral density function of torque, drift

and feed force have been calculated in [26] for two dif-
ferent types of drill coatings tested (zirconium nitride
and titanium nitride). It is concluded that the power con-
tent of the axial force and torque is significant over the
entire frequency range, whereas the power content of the
drift force is band limited. The power spectrum of the
drift force changes from a band limited process to a wide
band process when the drill is worn. The power content
of the high frequencies of the cutting forces (especially
the drift force component) increase as the tool
approaches failure. This can be used as an index to detect
the failure of the cutting tool.
Sometimes the number of points in the time domain

is kept very small compared to typical values like 2048.
If a small number of points is used, calculation of the
power spectrum is much faster and also the frequency
resolution is lower which is an advantage in the sense
that even though the frequency of amplitudes in the
spectrum might wander a little, they stay at the same
frequency in the power spectrum. Another advantage is
that the number of possible features that are used as
input for a diagnosis system is in this way limited. In
[12] only 256 points in the time domain have been used,
which corresponds to a spectrum of 128 points in this
case.
The somewhat limited 256 points in the time domain

have also been used in [22–24]. The area under the
power spectral density function (obtained through the
Welsh method) has been studied with success. Averag-
ing of the spectrums over a hole proved to give noisy
results but this could be improved by averaging the
results over a number of holes. All sensor signals, i.e.
feed and drift force (strain) and torque gave similar
results. Signal-to-noise analysis indicated that the power
at frequencies between 50 and 300 Hz have the highest
value of signal-to-noise ratio and, hence, are the most
reliable frequencies. Comparison of the PSD plots
showed that power at each frequency increases with
increase in drill wear. Normalized PSD plots of all of
the four sensor signals at different states of drill wear
were coincident. This indicates that power at all fre-
quencies increases proportionally with an increase in

drill wear. Therefore, the change of area under the PSD
plots was considered instead of power at one frequency,
for integration decreases the error.
A number of FFT based functions such as autocorre-

lation, power spectrum (20 highest amplitudes, harmon-
ics, as well as 1/3 and 1/1 octave bands), cepstrum and
liftered spectrum and also two-channel functions such as
cross-correlation, cross-spectrum, frequency response as
well as some multi-signal frequency response function
with more than two channels have been tested for tool
wear monitoring in metal cutting including drilling [13].
The normal power spectrum worked well when the ana-
lysed data were fitted to a third order regression curve.
Some of the two-channel functions (cross-spectrum,
coherence) also proved to work well in drilling.
Cepstrum analysis is used to identify a series of har-

monics or side bands in the power spectrum and to esti-
mate their relative strength [20]. Cepstrum is calculated
from the power spectrum either with inverse FFT
(complex cepstrum) or taking the power spectrum of the
logarithmic power spectrum (power cepstrum) [35]. In
the tests [20] cepstrum analysis was performed only
when a statistical RAMV indicator (explained earlier)
reached a certain threshold value but the cepstrum
showed larger amplitude at the frequency [35] corre-
sponding to the time of one spindle revolution. In the
tests reported in [13], cepstrum analysis also worked
well in drilling and in milling. This is a logical result
because both of these tool types have a number of cut-
ting edges and when a fault starts to increase the differ-
ence between the way the cutting edges work becomes
larger and consequently this is seen at the harmonics of
the rotational speed of the tool which is what cepstrum
then can show.
When compared to the traditional power spectrum,

benefits from the use of the higher-order spectrum
(HOS) features have been reported [28] in tool wear
monitoring. Use of HOS features is reported to enhance
monitoring performance primarily because they provide
information on the strength of the non-linear and per-
iodic component sideband structure in the received sig-
nal.

3.4. Wavelet transform

Wavelet transforms have become well known as use-
ful tools for various signal processing applications [34].
Wavelet transform is described as a good solution in the
time-frequency domain so that it can extract more infor-
mation in the time domain at different frequency bands.
Both continuous and discrete wavelet transforms are
used for tool breakage detection using spindle and feed
current signals. The test signals have been shown both
in the time domain and after wavelet transform in [34],
but no comparison with other methods is given. Hence
it is difficult to compare whether what is seen clearly
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after the wavelet transform could also be seen clearly
with some other analysis method, i.e. the benefits of the
use of wavelet transform are not apparent.
In [8] the use of wavelet transformations together with

neural networks is proposed in order to detect severe
damage to micro-drills just before the breakage occurs.
The use of wavelets is justified on the basis of the many
weaknesses FFT has, the first being fixed resolution. The
resolution of an entire frequency spectrum depends on
sampling frequency and the number of data points. The
second weakness is the representation of the entire spec-
trum, with the addition of harmonic signals, by assuming
that the data window is repeated indefinitely. This
assumption causes leakage problems and the transitions
cannot be identified in the data window. A third weak-
ness is the considerable noise in the transformations
because of the very large degrees of freedom of the sys-
tem. FFT analysis must be repeated several times and
the results must be averaged to obtain smooth output. In
[8], the Daubechies type wavelet system based on an
orthonormal base was used. By using wavelets, the thrust
force signal of the micro-drill has been simplified. The
analysis indicated that the wavelet translation coef-
ficients can represent the characteristics of micro-drilling
signals with reasonable accuracy without high frequency
components. The transition coefficients of all the normal
micro-drills demonstrated similar patterns. The charac-
teristics of the severely damaged micro-drills were found
to be totally different. Based on these results, it is sug-
gested that wavelets might be the perfect tool for many
applications requiring automated monitoring of manu-
facturing operations. However, no comparison to FFT or
statistical parameters has been made.

4. Diagnostic tools

The most simplistic methods of diagnosis in all moni-
toring is to use predefined limits, i.e. if a certain para-
meter in the analysis reaches a certain upper or lower
limit this is an indication of a failure of the tool or worn
tool. These types of fixed limits are often used by a
human operator and they are also used in monitoring
systems and form the basis of rule based expert systems.
Quite similar systems based on fuzzy logic are based on
these types of limits which then are fuzzy, i.e. they are
not exactly defined and the limits in this case usually
overlap. For example, the systems described in [33,36–
38] use crisp limits and the systems described in [15]
use fuzzy limits.
When performing diagnosis it is often more effective

to be able to follow the trend in the monitored signal
and parameter than just to look at the absolute value.
The reason for this is that in many cases there are outside
factors affecting the absolute value. In tool wear moni-
toring the limits for a certain parameter, e.g. vibration

amplitude, are a function of the tool type, workpiece
material, cutting parameters etc. Therefore, it is more
effective to follow some trend in the signal, e.g. if the
amplitude has increased to double or perhaps is five
times what it was when the tool was sharp it can be
supposed that the tool is worn. In [20] the more sophisti-
cated analysis is only carried out when a situation occurs
that a certain parameter reaches a predefined value com-
pared to the value in the beginning. One possible disad-
vantage of trend analysis is the amount of data that might
need to be saved in case the whole history of the signals
of the tools were to be saved. The amount of data could
be enormous in the case of a machine tool with a tool
magazine of tens of tools. One possible solution in order
to reduce the amount of data to be saved is given in
[36,37]. The suggested solution relies on the use of
regression analysis and the idea is to save only the sum-
mary terms of the regression function.
The use of neural nets can be seen as an attempt to

automate the process of writing the diagnostic rules, i.e.
if a sufficient amount of good data exists it is possible
to train a net that is capable of diagnosing the condition
of the tool. In principle, neural nets can be trained to
model the non-linear dependencies of the measured and
analysed parameters together with process parameters.
If process parameters are left out of the model, either
parameters that are insensitive to cutting conditions must
be used or they need to depend in such a way both on
process parameters and tool wear, and failure that the
model works in a number of cutting conditions. Alterna-
tively, a number of models corresponding to the possible
cutting conditions need to be developed. This is in prin-
ciple the same problem or limitation as described for
the rule based approach. The previous statement can be
rephrased in another way, i.e. if simple models based
on less sophisticated parameters are used the number of
models and corresponding work increases. Unfortu-
nately, the opposite is also true, i.e. if sophisticated mod-
els which rely on sophisticated parameters are used, the
time it takes to train the models increases as does the
calculation time of the parameters. A summary of
approaches adopted for diagnosis of tool condition in
drilling is given in Table 3.
One of the earliest expert system concepts to monitor

both the cutting process and the condition of the cutting
tool is described in [33]. Among other things, the
VILMOS-1 system is expected to monitor tool wear and
tool breakage and also to protect the tools against over-
load.
In [36–38] a rule based expert system is described.

The system consists of a number of modules: data acqui-
sition and analysis, fault tree, symptom tree, rule synthe-
sizer and fault manager. The system can be configured
by the user through a graphical interface. The data are
acquired through an AD-card using a number of measur-
ing sensors such as vibration and acoustic emission etc.
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Table 3
A summary of approaches adopted for diagnosis of tool condition in drilling

Reference number Rule Fuzzy Pattern Machining Multi-layer Kohonen self- Restricted Adaptive
based logic recognition influence perception organising map Coulomb energy resonance theory

diagram model neural network networks networks

[8] "
[9] "
[12] "
[15] "
[16] "
[22,23,39] " "
[25] "
[30] "
[31] "
[33] "
[36–38] "

Signal analysis is based on the use of statistical para-
meters and FFT based functions. All the data are saved
in a database. The actual rules of the system are written
automatically through the use of fault and symptom tree
modules. The idea has been to make the system very
flexible so it could be used for monitoring all kinds of
machining processes with all kinds of tools. The actual
diagnosis of the so-called fault manager relies on a num-
ber of parameters from a number of sensors.
A generalized Machining Influence Diagram (MID) is

formulated for modelling different modes of failure in
drilling [25]. A faster algorithm for this model is
developed to solve the diagnostic problem in real-time
applications. The MID model is utilized for diagnosing
two failure modes: the drill wear, and the drill failure
prediction. Each drilling operation is categorized deter-
ministically using the machining parameters. The esti-
mation of probability that the tool is worn is done by
fusing information about wear from the two sensors:
spindle and feed motor current. No sensor fusion is used
for tool failure prediction since only the strain gage sig-
nal is used. The state of the drill is diagnosed. It consists
of three states, “ok”, “worn” and “about-to-fail”. Three
options are available for control: “continue”, “reduce
feed” and “replace tool”. The cost of machining is a
function of the control options and the state of the drill.
The response time of the on-line system is well within
the desired response time of actual production lines. The
instance of diagnosis is reasonably close to the actual
instance of wear. The accuracy of prediction has also
been significantly promising. In cases where the drill
wear is not diagnosed, the system is reported to at least
predict drill failure, and vice versa. Consequently, by
diagnosing at least one of the two failure modes, the
system is able to prevent any abrupt failure of the drill.
The system described in [15] has two input features

which are the feed force and torque and the wear of the
drill is clustered in four wear states, i.e. initial, small,
normal and severe. The approach is fuzzy, i.e. fuzzy lim-

its are defined using the fuzzy C-means algorithm. With
the presented two test cases used for the development
of the system the approach works well. However, the
approach does not take into account the effect of the
cutting process into the measured parameters, i.e. the
user would need to define new fuzzy limits for different
types of workpiece materials and drills and also for dif-
ferent cutting parameters.
A two category linear classifier has been used for the

detection of drill wear [31]. Sensor fusion is used for
on-line drill wear detection. The indirect indexes used
are the percentage increase of the peak-to-peak ampli-
tude of vertical acceleration and the percentage increase
of the drilling thrust. A two-category linear classifier is
employed to distinguish the worn-out drills from those
that are still usable. Flank wear area is used to categorize
the drill conditions. The wear states are classified into
two categories, usable and worn-out. Based on the
present data a success rate greater than 90% has been
obtained for on-line detection of the drill wear in one
cutting process situation.
A rather simple neural network has been developed

in [30] with two input features and one output. The num-
ber of neurons in the hidden layer has been varied from
four to nine. Wear has been classified into five categor-
ies, i.e. initial, slight, moderate, severe and worn-out
wear (with the same data as in [31]). It is concluded that
neither the percentage increase of peak-to-peak ampli-
tude of the vertical acceleration or the percentage
increase of the thrust can be used for on-line classi-
fication of drill wear. However, integrating both signals
yields better results. Based on the drilling tests, a success
rate of over 85% can be reached for on-line recognition
of drill wear using artificial neural networks. No vari-
ation of the cutting process parameters has been
included, i.e. the wider applicability of the model has
not been demonstrated.
The effectiveness of artificial neural networks with

different numbers of hidden layer neurons together with
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the use of adaptive activation-function slopes have been
tested in the diagnosis of tool wear in [16]. In all of the
models nine input features (feed force and torque based
on statistical parameters with one cutting process
indicator) and one output have been used. The number
of neurons in the hidden layer has been varied between
14 and 22. It is concluded that modified artificial neural
networks with adaptive activation-function slopes con-
verge much faster than the conventional feed forward
neural networks. Artificial neural networks can dis-
tinguish between a worn and a usable drill on-line with
100% reliability and also accurately estimate the average
flank wear even under different drilling conditions. The
increase in number of neurons does not necessarily
improve the accuracy of on-line drill wear measurement.
A neural network with 9"14"1 architecture yielded the
best results for on-line drill wear measurement. Although
the reported results seem good even when changing the
cutting conditions, the limitation in the presented
material is that the variation in cutting conditions has
not been documented and it is possible that there has not
been any variation of feed rate in the tests.
The use of neural networks in the sensor integration

has been studied in [22,23,39] based on torque, feed and
drift force signals. In the thesis [22] it is shown that there
is no point in trying to integrate the information from
these signals because they all have equally good corre-
lation with tool wear and one sensor is adequate for
monitoring and controlling tool wear. It is also stated
that integration of the sensor signals can introduce
redundancy in the sensor integration technique and, in
the presence of noise, result in the deterioration of the
estimation of drill wear. Periodograms of sensor signals
at different states of drill wear are mixed and therefore
it is difficult to apply the clustering technique.
A self-organizing neural network has been used in the

development of a diagnosis system based on the use of
feed force and torque together with FFT based feature
extraction [12]. The approach is regarded as a promising
empirical modeller. The conclusion is made that a cer-
tain number of feature vector components or dimen-
sionality of a dynamic system does exist by which the
drilling process can be properly characterized. Also the
classification error is studied with different numbers of
features. The effect of the cutting parameters is not
covered in this context.
The Restricted Coulomb Energy (RCE) network is a

parallel neural network modelled after the human learn-
ing and classification process [9]. The architecture of the
RCE network is a feed-forward arrangement. This allows
the network to classify pattern signals in real time with-
out any special hardware. The network is composed of
three layers of cells: the input layer, the internal (hidden)
layer, and the output layer. The feature vectors of the
pattern to be learned are presented to the input layer.
The nodes of the input layer are connected to every node

of the internal layer. The nodes in the internal layer are
connected selectively to the output nodes during the
training process. The output nodes correspond to differ-
ent pattern classes. The internal connections occur in
such a way that the correct output cell will be fired when
an appropriate pattern class is given to the system. RCE
networks use two learning mechanisms. When new pat-
terns are presented to the network, the response of the
neural network is tested without any modification of the
weight matrix. If the classification of the network
matches the required output, the weight matrix is not
changed. Otherwise, the second method is used and the
influence of the exiting nodes are modified and/or a new
node will be created. In the case of breakage detection
in micro-drilling, eight input features (four average, four
standard deviation) based on thrust force have been used.
The RCE network correctly recognised normal and tool
failure cases with a higher than 90% accuracy.
Adaptive resonance networks have been tested for the

detection of severe micro-drill damage just before a
complete tip breakage occurs [8]. According to adaptive
resonance theory (ART), adaptive resonance occurs
when the input to a network and the feedback expect-
ancies match. ART2-type neural networks have been
developed to realize a self-organized stable pattern rec-
ognition capability in real time. The ART2-type neural
networks compare a given input with previously encoun-
tered patterns. If the input is similar to any of the pat-
terns, it will be placed in the same category with similar
patterns. On the other hand, if the input is not similar to
any of the previously presented patterns a new category
will be assigned to the given input. The sensitivity of
the neural network is adjusted with the vigilance value.
Two approaches have been tested: in the first, 22 wavelet
coefficients, and in the second, six parameters were cal-
culated from the original 24 coefficients to represent the
information of the wavelet coefficients to the neural net.
The direct encoding method with 22 coefficients was
found to be slower but more reliable. The ART2-type
neural networks required two to three times more com-
putational time to classify the 22 wavelet coefficients
than the six parameters of the secondary encoding
method. However, there was only one classification error
in 61 cases. The ART2 worked much faster with the
parameters of the secondary encoding; but there were at
least three estimation errors in any studied case.

5. Concluding remarks

A summary of the monitoring methods, signal analysis
and diagnostic techniques for tool wear and failure moni-
toring in drilling has been given. In this context only
indirect monitoring methods such as force, vibration and
current measurements have been covered, i.e. direct
monitoring methods based on dimensional measurement
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etc. are not included. In signal analysis statistical para-
meters calculated from the time domain signal are
widely used. Fast Fourier and Wavelet Transform are
more sophisticated means of signal analysis that have
also been used for tool wear and breakage detection by
a number of research groups. Only a limited number of
automatic diagnostic tools have been developed for diag-
nosis of the condition of the tool in drilling. All of these
rather diverse approaches that have been available in the
literature are covered in this study. In the reported
material there are both success stories and attempts that
have not been so successful. Only in a few of the papers
have attempts been made to compare the chosen
approach with other methods, i.e. many of the papers
only present one approach and unfortunately quite often
the test material the study is based on is limited,
especially when it comes to the cutting process para-
meter variation, i.e. variation of cutting speed, feed rate,
drill diameter and material and also workpiece material.
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